
Lecture Notes in Computer Science 6697
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Tobias Achterberg J. Christopher Beck (Eds.)

Integration
of AI and OR Techniques
in Constraint Programming
for Combinatorial
Optimization Problems

8th International Conference, CPAIOR 2011
Berlin, Germany, May 23-27, 2011
Proceedings

13

Volume Editors

Tobias Achterberg
Zuse Institut Berlin
Takustr. 7
14195 Berlin, Germany
E-mail: achterberg@zib.de

J. Christopher Beck
University of Toronto
Department of Mechanical
and Industrial Engineering
5 King’s College Rd.
Toronto, ON, M5S 3G8, Canada
E-mail: jcb@mie.utoronto.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-21310-6 e-ISBN 978-3-642-21311-3
DOI 10.1007/978-3-642-21311-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: Applied for

CR Subject Classification (1998): G.1.6, G.1, G.2.1, F.2.2, I.2, J.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 8th International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2011) was held in Berlin, Germany, May 23–27, 2011.

The conference is intended primarily as a forum to focus on the integration
and hybridization of the approaches of constraint programming (CP), artificial
intelligence (AI), and operations research (OR) technologies for solving large-
scale and complex real-life combinatorial optimization problems. CPAIOR is
focused on both theoretical and practical, application-oriented contributions.

Submissions for this year were 22 long papers and 13 short papers. Each paper
received three independent peer reviews which formed the basis for the accep-
tance of 13 long papers and 7 short papers. These papers are published in full in
the proceedings. Many thanks to the members of the Program Committee and
the external reviewers, who reviewed all the submissions in detail and discussed
conflicting papers deeply. In addition, the Program Chairs solicited late-breaking
abstracts for presentation at the conference. The number of selected abstracts
was not yet available at press time.

Thanks to the Department of Scientific Information of the Zuse Institute
Berlin, video recordings of the presentations of CPAIOR 2011 were made. They
can be found on the CPAIOR 2011 webpage at cpaior2011.zib.de. We would
like to especially thank Wolfgang Dalitz and the Web Technology and Multime-
dia group for creating this valuable record of the conference.

This volume includes abstracts of the three invited talks of CPAIOR:

– Craig Boutilier, University of Toronto, Canada, on the use of AI and OR
techniques for preference elicitation and learning in social choice

– Ian Gent, University of St. Andrews, UK, on constraint propagation in CP
and SAT

– Andrea Lodi, University of Bologna, Italy, on bilevel programming and its
impact in branching, cutting and complexity

CPAIOR 2011 also included a one-day Master Class and one day of work-
shops. The Master Class is intended for PhD students, researchers, and prac-
titioners and was held on the theme of search in AI, OR, CP, and SAT. Four
speakers addressed each of these topics individually and then participated in a
panel discussion to highlight opportunities for cross-fertilization. The speakers
were:

– John Chinneck, Carleton University, Canada, on search in mixed-integer
programming

– Gilles Pesant, Ecole Polytechnique, Canada, on search in constraint pro-
gramming

VI Preface

– Nathan Sturtevant, University of Denver, USA, on search in AI
– Marijn Heule, Delft University of Technology, The Netherlands, on search

for satisfiability

The one-day workshop program consisted of four workshops:

– Energy
Organized by Armin Fügenschuh, Benjamin Hiller, Jesco Humpola, and
Thorsten Koch, all from Zuse Institute Berlin, Germany

– Hybrid Methods for Nonlinear Combinatorial Optimization Problems
Organized by Stefano Gualandi, Universita di Pavia, Italy, and Pietro Be-
lotti, Clemson University, USA

– Innovative Scheduling and Other Applications Using CP-AI-OR
Organized by Armin Wolf, Fraunhofer-Institut für Rechnerarchitektur und
Softwaretechnik, FIRST, Germany, and Petra Hofstedt, Brandenburgische
Technische Universität Cottbus, Germany

– Mathematical Optimization of Railway Systems
Organized by Ralf Borndörfer, Zuse Institute Berlin/TU Darmstadt, Ger-
many, Holger Flier, ETH Zürich, Switzerland, Martin Fuchsberger, ETH
Zürich, Switzerland, and Thomas Schlechte, Zuse Institute Berlin, Germany

The staff at Zuse Institute Berlin did an outstanding job providing adminis-
trative support, making sure the money was in the right place at the right time,
and in handling the registrations. In particular, we would like to thank Annerose
Steinke, Sylke Arencibia, Sybille Mattrisch, and Bettina Kasse.

A special thanks goes to the Conference Chairs, Timo Berthold, Ambros
Gleixner, Stefan Heinz, and Thorsten Koch, for the organization and substantial
efforts on sponsorship, publicity, logistics, and all the other things that have to
happen behind the scenes to make a conference work.

Finally, we would like to thank the sponsors who made it possible to organize
this conference:

DFG Research Center Matheon, Zuse Institute Berlin, the Association
for Constraint Programming, SAS, IBM, AIMMS, Gurobi Optimization,
FICO, the Institute for Computational Sustainability, GAMS, IVU Traf-
fic Technologies AG, MOSEK Optimization, National ICT Australia,
Jeppesen, the ABB Group, atesio GmbH, ProCom GmbH, AMPL,
and OGE.

May 2011 Tobias Achterberg
J. Christopher Beck

Conference Organization

Program Chairs

Tobias Achterberg, J. Christopher Beck

Conference Chairs

Timo Berthold, Ambros M. Gleixner, Stefan Heinz, Thorsten Koch

Program Committee

Oliver Bastert
Bob Bixby
John Chinneck
Andrew Davenport
Sophie Demassey
Bernard Gendron
Carla Gomes
Youssef Hamadi
Emmanuel Hebrard
Susanne Heipcke
John Hooker
Jeff Linderoth
Andrea Lodi
Michele Lombardi
Luc Mercier
Laurent Michel
Ian Miguel
Michela Milano
Laurent Perron
Gilles Pesant

Marc Pfetsch
Claude-Guy Quimper
Ted Ralphs
Jean-Charles Régin
Andrea Rendl
Louis-Martin Rousseau
Ashish Sabharwal
Meinolf Sellmann
Paul Shaw
Helmut Simonis
Paolo Toth
Michael Trick
Gilles Trombettoni
Klaus Truemper
Pascal Van Hentenryck
Willem-Jan van Hoeve
Mark Wallace
Armin Wolf
Tallys Yunes
Alessandro Zanarini

External Reviewers

Alejandro Arbelaez
David Bergman
Andre Cire
Lars Kotthoff
Robert Mateescu

Eoin O’Mahony
Yves Papegay
Philippe Refalo
Fabrizio Riguzzi
Petr Viĺım

Table of Contents

Preference Elicitation and Preference Learning in Social Choice
(Invited Talk) . 1

Craig Boutilier

Propagation in Constraints: How One Thing Leads to Another
(Invited Talk) . 2

Ian P. Gent

On Bilevel Programming and its Impact in Branching, Cutting and
Complexity (Invited Talk) . 3

Andrea Lodi

Optimization Methods for the Partner Units Problem 4
Markus Aschinger, Conrad Drescher, Gerhard Friedrich,
Georg Gottlob, Peter Jeavons, Anna Ryabokon, and
Evgenij Thorstensen

Manipulating MDD Relaxations for Combinatorial Optimization 20
David Bergman, Willem-Jan van Hoeve, and John N. Hooker

The AllDifferent Constraint with Precedences . 36
Christian Bessiere, Nina Narodytska, Claude-Guy Quimper, and
Toby Walsh

Retail Store Workforce Scheduling by Expected Operating Income
Maximization . 53

Nicolas Chapados, Marc Joliveau, and Louis-Martin Rousseau

Spatial and Objective Decompositions for Very Large SCAPs 59
Carleton Coffrin, Pascal Van Hentenryck, and Russell Bent

Upgrading Shortest Paths in Networks . 76
Bistra Dilkina, Katherine J. Lai, and Carla P. Gomes

Parallel Machine Scheduling with Additional Resources:
A Lagrangian-Based Constraint Programming Approach 92

Emrah B. Edis and Ceyda Oguz

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph
Problem with Symmetry . 99

Tim Januschowski and Marc E. Pfetsch

X Table of Contents

Climbing Depth-Bounded Adjacent Discrepancy Search for Solving
Hybrid Flow Shop Scheduling Problems with Multiprocessor Tasks 117

Asma Lahimer, Pierre Lopez, and Mohamed Haouari

On Counting Lattice Points and Chvátal-Gomory Cutting Planes 131
Andrea Lodi, Gilles Pesant, and Louis-Martin Rousseau

Precedence Constraint Posting for Cyclic Scheduling Problems 137
Michele Lombardi, Alessio Bonfietti, Michela Milano, and
Luca Benini

A Probing Algorithm for MINLP with Failure Prediction by SVM 154
Giacomo Nannicini, Pietro Belotti, Jon Lee, Jeff Linderoth,
François Margot, and Andreas Wächter

Recovering Indirect Solution Densities for Counting-Based Branching
Heuristics . 170

Gilles Pesant and Alessandro Zanarini

Using Hard Constraints for Representing Soft Constraints 176
Jean-Charles Régin

The Objective Sum Constraint . 190
Jean-Charles Régin and Thierry Petit

Almost Square Packing . 196
Helmut Simonis and Barry O’Sullivan

Efficient Planning of Substation Automation System Cables 210
Thanikesavan Sivanthi and Jan Poland

A New Algorithm for Linear and Integer Feasibility in Horn
Constraints . 215

K. Subramani and James Worthington

Timetable Edge Finding Filtering Algorithm for Discrete Cumulative
Resources . 230

Petr Viĺım

Identifying Patterns in Sequences of Variables . 246
Alessandro Zanarini and Pascal Van Hentenryck

Author Index . 253

Preference Elicitation and Preference Learning

in Social Choice

Craig Boutilier

Department of Computer Science, University of Toronto,
Toronto, ON, Canada
cebly@cs.toronto.edu

http://www.cs.toronto.edu/~cebly

Social choice has been the subject of intense investigation within computer sci-
ence, AI, and operations research, in part because of the ease with which pref-
erence data from user populations can now be elicited, assessed, or estimated in
online settings. In many domains, the preferences of a group of individuals must
be aggregated to form a single consensus recommendation, placing us squarely
in the realm of social choice.

I argue that the application of social choice models and voting schemes to
domains like web search, product recommendation and social networks places
new emphasis, in the design of preference aggregation schemes, on issues such
as: articulating decision criteria suitable to the application at hand; approximate
winner determination; incremental preference elicitation; learning methods for
models of population preferences; and more nuanced analysis of the potential
for manipulation.

In this talk, I’ll provide an overview of some of these challenges and outline
some of our recent work tackling of them, including methods for: learning prob-
abilistic models of population preferences from choice data; robust optimization
(winner determination) in the presense of incomplete user preferences; and incre-
mental vote/preference elicitation for group decision making. Each of these poses
interesting modeling and optimization challenges that are best tackled using a
combination of techniques from AI, operations research, and statistics.

Parts of this talk describe joint work with Tyler Lu, Department of Computer
Science, University of Toronto.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Propagation in Constraints:

How One Thing Leads to Another

Ian P. Gent

School of Computer Science, University of St. Andrews,
St. Andrews, Scotland, UK
ipg@cs.st-andrews.ac.uk

Abstract of Invited Talk

At a conference such as CPAIOR, we have experts from many different ap-
proaches to searching huge combinatorial spaces. Much of what we all do is com-
mon, for example similar search methods, heuristics, and learning techniques. So
what is it that is essentially different about Constraint Programming in particu-
lar? One answer is the power and diversity of constraint propagation algorithms.
By contrast, other search disciplines often rely on just one propagation technique,
such as unit propagation in SAT.

So to paraphrase the property expert, for the duration of this talk I’ll say that
the three most important aspects of Constraint Programming are “Propagation,
Propagation, Propagation.” I’ll talk about all three. First, what Propagation is
and the theory of how propagation algorithms work. Second, how Propagation
forms the beating heart of a modern constraint solver, typically throwing away
a lot of the theory in the process. And third, some aspects of Propagation in
constraints being researched right now.

I hope to bring out some of the beauty and surprises in propagation. I also
hope to show how ideas from one discipline have propagated to another, for
example the introduction of watched literals from SAT into Constraint Pro-
gramming. I also hope one propagation will lead to another as some of these
lovely ideas propagate again.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, p. 2, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On Bilevel Programming and Its Impact

in Branching, Cutting and Complexity

Andrea Lodi

DEIS, Università di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

andrea.lodi@unibo.it

Abstract. Bilevel programming is a rich paradigm to express a vari-
ety of real-world applications including game theoretic and pricing ones.
However, what we are interested in this talk is to discuss the bilevel
nature of two of the most crucial ingredients of enumerative methods
for solving combinatorial optimization problems, namely branching and
cutting.

Specifically, we discuss a new branching method for 0-1 programs
called interdiction branching [3] that exploits the intrinsic bilevel na-
ture of the problem of selecting a branching disjunction. The method
is designed to overcome the difficulties encountered in solving problems
for which branching on variables is inherently weak. Unlike traditional
methods, selection of the disjunction in interdiction branching takes into
account the best feasible solution found so far.

On the cutting plane side, we examine the nature of the so-called sep-
aration problem, which is that of generating a valid inequality violated
by a given real vector, usually arising as the solution to a relaxation of
the original problem. We show that the problem of generating a max-
imally violated valid inequality often has a natural interpretation as a
bilevel program [2]. In some cases, this bilevel program can be easily re-
formulated as a single-level mathematical program, yielding a standard
mathematical programming formulation for the separation problem. In
other cases, no reformulation exists yielding surprisingly interesting ex-
amples of problems arising in the complexity hierarchies introduced by
Jeroslow [1].

Keywords: Bilevel programming, branching, cutting, complexity.

References

1. Jeroslow, R.: The polynomial hierarchy and a simple model for competitive analysis.
Mathematical Programming 32, 146–164 (1985)

2. Lodi, A., Ralphs, T.K., Woeginger, G.: Bilevel Programming and Maximally Vio-
lated Valid Inequalities. Technical Report OR/11/3, DEIS - Università di Bologna

3. Lodi, A., Ralphs, T.K., Rossi, F., Smriglio, S.: Interdiction Branching. Technical
Report OR/09/10, DEIS - Università di Bologna

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, p. 3, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimization Methods for the Partner Units

Problem�

Markus Aschinger1, Conrad Drescher1, Gerhard Friedrich2, Georg Gottlob1,
Peter Jeavons1, Anna Ryabokon2, and Evgenij Thorstensen1

1 Computing Laboratory, University of Oxford
2 Institut für Angewandte Informatik, Alpen-Adria-Universität Klagenfurt

Abstract. In this work we present the Partner Units Problem as a novel
challenge for optimization methods. It captures a certain type of config-
uration problem that frequently occurs in industry. Unfortunately, it can
be shown that in the most general case an optimization version of the
problem is intractable. We present and evaluate encodings of the problem
in the frameworks of answer set programming, propositional satisfiability
testing, constraint solving, and integer programming. We also show how
to adapt these encodings to a class of problem instances that we have
recently shown to be tractable.

1 Introduction

The Partner Units Problem (Pup) has recently been proposed as a new chal-
lenge in automated configuration [8]. It captures the essence of a specific type
of configuration problem that frequently occurs in industry.

Informally the Pup can be described as follows: Consider a set of sensors that
are grouped into zones. A zone may contain many sensors, and a sensor may be
attached to more than one zone. The Pup then consists of connecting the sensors
and zones to control units, where each control unit can be connected to the same
fixed maximum number UnitCap of zones and sensors.1 Moreover, if a sensor is
attached to a zone, but the sensor and the zone are assigned to different control
units, then the two control units in question have to be directly connected.
However, a control unit cannot be connected to more than InterUnitCap other
control units (the partner units).

For an application scenario consider, for example, a museum where we want
to keep track of the number of visitors that populate certain parts (zones) of
the building. The doors leading from one zone to another are equipped with
sensors. To keep track of the visitors the zones and sensors are attached to control
units; the adjacency constraints on the control units ensure that communication
between units can be kept simple.
� Work funded by FFG FIT-IT Grant 825071 (Klagenfurt) and EPSRC Grant

EP/G055114/1 (Oxford).
1 For ease of presentation and without loss of generality we assume that UnitCap is

the same for zones and sensors.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 4–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimization Methods for the Partner Units Problem 5

Let us emphasize that the Pup is not limited to this application domain: it
occurs whenever sensors that are grouped into zones have to be attached to
control units, and communication between units should be kept simple. Typical
applications include intelligent traffic management, or surveillance and security
applications. The Pup has been introduced as a novel benchmark instance at
this year’s answer set programming competition [2].

Figure 1 shows a Pup instance and a solution for the case UnitCap =
InterUnitCap = 2. In this example six sensors (left) and six zones (right), which
are completely inter-connected, are partitioned into units (shown as squares)
respecting the adjacency constraints. Note that for the given parameters this is
a maximal solvable instance; it is not possible to connect a new zone or sensor
to any of the existing ones.

Fig. 1. Solving a K6,6 Partner Units Instance — Partitioning Sensors and Zones into
Units on a Circular Unit Layout

Very recently, we have shown that the case where InterUnitCap = 2 and
UnitCap = k for some fixed k is tractable, by giving a specialized NLogSpace

algorithm that is based on the notion of a path decomposition [1]. While this
case is of some importance for our partners in industry, the general case is
also interesting: Consider, for example, a grid of rooms, where every room is
accessible from each neighboring room, and all the doors are fitted with a
sensor. Moreover, assume there are doors to the outside on two sides of the
building; the corresponding instance is shown in Figure 2, with rooms as black
squares, and doors as circles. It is not hard to see that this instance is unsolv-
able for InterUnitCap = 2 and UnitCap = 2. However, it is easily solved for
InterUnitCap = 4 and UnitCap = 2: Every room goes on a distinct unit, to-
gether with the sensors to the west and to the north; the connections between
units correspond to those between rooms. Clearly this solution is optimal, in the
sense of using the least possible number of units.

In this paper we present and evaluate encodings in the optimization frame-
works of answer set programming, constraint satisfaction, Sat-solving, and in-
teger programming, that can be used to solve the general version of the Pup.

6 M. Aschinger et al.

Fig. 2. A Grid-like Pup Instance

We also show how to adapt these encodings to the special case InterUnitCap = 2,
and compare the adapted encodings against our specialized algorithm.

It is worth emphasizing that we do not take our encodings/algorithms to be
the final answer on the Pup. Instead we hope that our work will spark interest
in the problem across the different optimization research communities, eventu-
ally resulting in better encodings and better theoretical understanding of the
problem.

The remainder of this paper is organized as follows: In section 2 we give
the basic formal definitions, and identify general properties of the Pup. Then,
in section 3 we present problem models in the frameworks of answer set pro-
gramming, propositional satisfiability testing, integer programming, and con-
straint solving; these problem models can be used for arbitrary fixed values of
InterUnitCap. In section 4 we briefly recall our recent tractability results for the
case InterUnitCap = 2, and show how the various Pup encodings presented in
this paper can be adapted to this special case. Finally, in section 5 we evaluate
the performance of our encodings, and in section 6 we list some directions for
future research.

2 The Partner Units Problem

2.1 Formal Definition

Formally, the Pup consists of partitioning the vertices of a bipartite graph G =
(V1, V2, E) into a set U of bags such that each bag

– contains at most UnitCap vertices from V1 and at most UnitCap vertices
from V2; and

– has at most InterUnitCap adjacent bags, where the bags U1 and U2 are
adjacent whenever vi ∈ U1 and vj ∈ U2 and (vi, vj) ∈ E.

To every solution of the Pup we can associate a solution graph. For this we
associate to every bag Ui ∈ U a vertex vUi . Then the solution graph G∗ has the
vertex set V1∪V2∪{vUi | Ui ∈ U} and the set of edges {(v, vUi) | v ∈ Ui∧Ui ∈ U}

Optimization Methods for the Partner Units Problem 7

∪ {(vUi , vUj) | Ui and Uj are adjacent.}. In the following we will refer to the
subgraph of the solution graph induced by the vUi as the unit graph.

The following are the two most important reasoning tasks for the Pup: Decide
whether there is a solution, and find an optimal solution, that is, one that uses
the minimal number of control units. We are especially interested in the latter
problem. For this we consider the corresponding decision problem: Is there a
solution with a specified number of units? The rationale behind the optimization
criterion is that (a) units are expensive, and (b) connections are cheap.

2.2 The Partner Units Problem Is Intractable

By a reduction from BinPacking, it can be shown that the optimization version
of the Pup is intractable when InterUnitCap = 0, and UnitCap is part of the
input. Observe that clearly the Pup is in NP (cf. also section 3).

Theorem 1 ([1]). Deciding whether a Pup instance has a solution with a given
number of units is NP-complete, when InterUnitCap = 0, and UnitCap is part
of the input.

In practice, however, the value of UnitCap will typically be fixed.

2.3 Forbidden Subgraphs of the Pup

In solvable instances sensors cannot belong to arbitrarily many zones (and vice
versa) [1]:

Lemma 1 (Forbidden Subgraphs of the Pup). A Pup instance has no
solution if it contains K1,n or Kn,1 as a subgraph, where n = ((InterUnitCap +
1) ∗ UnitCap) + 1.

2.4 K-Regular Graphs

There is an interesting connection between most general solutions to the Pup

and k-regular unit graphs, where a graph is k-regular if every vertex has exactly k
neighbors: In k-regular unit graphs we are exploiting the InterUnitCap capacity
for connections between units to the fullest. Hence, k-regular unit graphs are the
most general solutions (if they exist).

In the case where k = 2, there is exactly one k-regular graph, the cycle; we
exploit this fact in section 4. In the case where k is odd, k-regular unit graphs
only exist if there is an even number of units (“hand-shaking lemma”). Moreover,
for k > 2 the number of distinct most general unit graphs grows rapidly: E.g.
for k = 4 there are six distinct graphs on eight vertices, and 8037418 on sixteen
vertices; for twenty vertices not all distinct graphs have been constructed [13].
It can be shown that all these solution topologies can be forced:

Observation 1 (Pup instances and k-regular graphs). For every k-regular
graph Gk there exists a Pup instance G with InterUnitCap = k such that in every
solution of G the unit graph is Gk.

8 M. Aschinger et al.

Proof. Construct the instance G as follows:

1) First connect 2 ∗ UnitCap vertices (i.e. sensors and zones) to each node in
Gk. Let the set of all sensors (zones) be V1 (V2).

2) The instance G contains all edges (v1, v2), where v1 ∈ V1 and v2 ∈ V2 are
connected to either the same or adjacent nodes in Gk.

We show that every solution is isomorphic to Gk. We consider two cases:

– 0 ≤ k ≤ 1: The result is immediate.
– k > 1: Let u0 be a node in Gk with neighbors uj : 1 ≤ j ≤ k. Denote by V ui

1

and V ui
2 the sensors and zones created in G for ui : 0 ≤ i ≤ k. Let G′

k be an
optimal solution for G. We need two observations: (1) For each 0 ≤ i ≤ k
both V ui

1 and V ui
2 are on the same unit in G′

k. (2) For 0 ≤ i < j ≤ k if
V ui

1 ∪ V ui
2 and V

uj

1 ∪ V
uj

2 are connected in G then their units are connected
in G′

k.

Hence, if InterUnitCap > 2, and there are no restrictions on the solution topology
in the application domain, then it is practically not feasible to iteratively try all
most general solution topologies. The solution topology will have to be inferred
instead.

2.5 Bounds on the Number of Units Required

Let us next point out that the number of units used when solving an instance
G = (V1, V2, E) is bounded from below by lb = �max (|V1|,|V2|)

UnitCap �. Clearly it can
also be bounded from above by ub = |V1| + |V2| — we never need empty
units. If InterUnitCap = 2 and UnitCap > 1 we can show that the stronger
ub = max (|V1|, |V2|) holds for connected instances [1]. Now, if there are multiple
connected components Ci in the instance with upper bounds ubi, then we have
ub =

∑
ubi. We conjecture that this also holds for InterUnitCap > 2, but have

so far been unable to prove it. These bounds are exploited in the problem encod-
ings below either for keeping the problem model small, or to limit the depth of
iterative deepening search. In this approach we first try to find a solution with
lb units; if that fails increase lb by one; the first solution found will be optimal.
For both approaches better upper bounds are desirable.

2.6 Symmetry Breaking

If we don’t use iterative deepening search, then in some problem models we
might obtain solutions with empty units. Here we can do symmetry breaking,
by demanding that whenever unit j has a sensor or zone assigned to it, then
every unit j′ < j also has some sensor or zone assigned to it.

We can also rule out a lot of the connections between sensors and units (or
alternatively, between zones and units) immediately. Consider sensors and units:
Sensor 1 must be somewhere, so it might as well be on unit 1. Sensor 2 can either
be on unit 1 or on a new unit, let’s say 2, and so on. Unfortunately, we cannot
do this on both sensors and zones, since the edges may disallow a zone and a
sensor on the same unit.

Optimization Methods for the Partner Units Problem 9

3 Encodings for the General Case

We are next going to outline encodings of the Pup where InterUnitCap is an
arbitrary fixed constant. Due to cost considerations we are especially interested
in the optimization version of the Pup: We want to minimize the number of
expensive units used, but do not consider the cost for the cheap connections
between them.

In particular, we show how the problem can be encoded in the frameworks
of propositional satisfiability testing (Sat), integer programming (Ip), and con-
straint solving (Csp), all of which can be considered as state-of-the-art for opti-
mization problems [11]. In addition we will also describe an encoding in answer
set programming (Asp), a currently very successful knowledge representation
formalism.

3.1 Answer Set Programming

First, we show how to encode the Pup in answer set programming [9,12] which
has its roots in logic programming and deductive databases. This knowledge
representation language is based on a decidable fragment of first-order logic and
is extended with language constructs such as aggregation and weight constraints.
Already the propositional variant allows the formulation of problems beyond the
first level of the polynomial hierarchy. In case standard propositional logic is
employed2, an answer set corresponds to a minimal logical model by definition
of [12].

In our encodings a solution (i.e. a configuration) is the restriction of an answer
set to those literals that satisfy the defined solution schema.

To encode a Pup instance in Asp we represent the zones and sensors by
the unary predicates zone/1 and sensor/1. The edges between zones and sen-
sors are represented by the binary predicate zone2sensor/2. The number of
available units lower =

⌈
max(|Sensors|,|Zones|)

2

⌉
, unitCap and interUnitCap are

each specified by a constant. The Pup is then encoded via the following logical
sentences employing the syntax described in [3]:

(1) unit(1..lower).

(2) 1 { unit2zone(U,Z) : unit(U) } 1 :- zone(Z).

(3) 1 { unit2sensor(U,S) : unit(U) } 1 :- sensor(S).

(4) :- unit(U), unitCap+1 { unit2zone(U,Z): zone(Z) }.
(5) :- unit(U), unitCap+1 { unit2sensor(U,S): sensor(S) }.
(6) partnerunits(U,P) :- unit2zone(U,Z), zone2sensor(Z,S),

unit2sensor(P,S), U!=P.

(7) partnerunits(U,P) :- partnerunits(P,U), unit(U), unit(P).

(8) :- unit(U), interUnitCap+1 { partnerunits(U,P): unit(P) }.

The first statement generates the required number of units represented as facts:
unit(1). unit(2). . . . unit(lower). The second and the third clause ensure that
2 All literals in rules are negation free. ⊥, →, ∧, ∨ are used to formulate (disjunctive)

rules.

10 M. Aschinger et al.

each zone and sensor is connected to exactly one unit. The edges between units
and zones (rsp. sensors) are expressed by unit2zone/2 (rsp. unit2sensor/2)
predicates. We use cardinality constraints [17] of the form l {L1, . . . , Ln} u spec-
ifying that at least l but at most u literals of L1, . . . , Ln must be true. So called
conditions (expressed by the symbol “:”) restrict the instantiation of variables
to those values that satisfy the condition. For example, in the second rule, for
any instantiation of variable Z a collection of ground literals unit2zone(U, Z) is
generated where the variable U is instantiated to all possible values s.t. unit(U)
is true. In this collection at least one and at most one literal must be true.

The fourth and the fifth rule guarantee that one unit controls at most UnitCap
zones and UnitCap sensors. In these rules the head of the rule is empty which im-
plies a contradiction in case the body of the rule is fulfilled. The last three rules
define the connections between units and limit the number of partner units to
InterUnitCap. Note that rules 4, 5 and 8 can be rephrased by moving the cardi-
nality constraint on the left-hand-side of the rule and adapting the boundaries.
We used the depicted encoding because it follows the Guess/Check/Optimize
pattern formulated in [12]. Depending on the particular encoding runtimes may
vary.

Alternatively, Asp solvers provide built-in support for optimization by re-
stricting the set of answer sets according to an objective function. For example,
for minimizing the number of units, the upper bound on the number of units
used has to be provided as a constant upper = max(|Zones|, |Sensors|). The
unit generation rule of the original program (line 1) then has to be replaced by:

(1’) unit(1..upper).

(2’) unitUsed(U):- unit2zone(U,Z).

(3’) unitUsed(U):- unit2sensor(U,S).

(4’) lower { unitUsed(X):unit(X) } upper.

(5’) unitUsed(X):- unit(X), unit(Y), unitUsed(Y), X<Y.

(6’) #minimize[unitUsed(X)].

Here, the second and the third rule express the property that a used unit always
has to be non-empty. Rule 4’ states that the number of used units must be
between lower and upper. Rule 5’ expresses an ordering on the units: units with
smaller numbers should be used first. This statement improves the performance
of the solver. The last rule expresses that the optimization criterion is the number
of units used in a solution.

3.2 Propositional Satisfiability Testing

We next show how to encode the Pup as a propositional satisfiability problem.
We are given sensors [1, S], zones [1, Z], and units [1, U], as well as UnitCap and
InterUnitCap.

Let suij denote that sensor i is assigned to unit j, and zuij that zone i is
assigned to unit j. First of all, every sensor and zone must belong to a unit, so

∀1 ≤ i ≤ S
∨

1≤j≤U

suij and ∀1 ≤ i ≤ Z
∨

1≤j≤U

zuij.

Optimization Methods for the Partner Units Problem 11

Furthermore, every sensor and zone belongs to at most one unit, therefore we
have

∀1 ≤ i ≤ S.∀1 ≤ j < j′ ≤ U. (¬suij ∨ ¬suij′)

and the same for zones.
Now we need to count both the number of zones and sensors on a unit, and

forbid both numbers to be above UnitCap. For this we use a sequential counter,
similar to the one presented in [18]. Let scijk mean that unit j has k sensors
assigned (ignore the i for now). We need to say that every sensor counts as one,

∀1 ≤ i ≤ S.∀1 ≤ j ≤ U. (suij → scij1) ,

and also that we increment this number when we see something new:

∀1 ≤ i < i′ ≤ S.∀1 ≤ j ≤ U.∀1 ≤ k ≤ UnitCap.(
sui′j ∧ scijk → sci′j(k+1)

)
The fact that we keep track of what we have seen (using index i) is to make
sure, for example, that scij5 is only true if there are five distinct sensors on a
unit. Finally, we forbid too many sensors on a unit via

∀1 ≤ i ≤ S.∀1 ≤ j ≤ U.¬scij(UnitCap+1).

Repeat this trick for zones using zcijk.
Finally, we need to use the edges. Let szij be given, and mean that sensor i

has an edge to zone j. Also, let uuij mean that units i and j are partnered. We
need to define this as

∀1 ≤ i ≤ S.∀1 ≤ j ≤ Z.∀1 ≤ k < k′ ≤ U.

(((suik ∧ zujk′) ∨ (suik′ ∧ zujk)) ∧ szij → uukk′)

and also, by symmetry,

∀1 ≤ i < j ≤ U. (uuij → uuji) .

Now we can count the partnered units like we did before, using pcijk, and then
forbidding pcij(y+1). Technically, we don’t need both uuij and uuji, but having
both makes the encoding simpler in the definitions above. We may skip uuii —
but we may also leave them in, as the clauses forcing uuij have i < j, and thus
uuii is never forced. Therefore,

∀1 ≤ i ≤ j ≤ U. (uuij → pcij1) ,

and
∀1 ≤ i < i′ ≤ U.∀1 ≤ j ≤ U.

(
uui′j ∧ pcijk → pci′j(k+1)

)
.

Finally, we forbid too many partners, and we are done:

∀1 ≤ i ≤ j ≤ U.¬pcij(InterUnitCap+1).

12 M. Aschinger et al.

3.3 Integer Programming

We next show how the Pup can be encoded into integer programming. If
InterUnitCap = 2 we set |Units| = max(|Sensors|, |Zones|); otherwise it is
|Units| = |Sensors| + |Zones|. Then we make matrices of Boolean variables suij

(and zuij , respectively) sensor si (zone zi) is assigned to unit uj. These matrices
are constrained to enforce that each sensor/zone is assigned exactly one unit,
and that no unit is assigned more than UnitCap sensors/zones:

su1,1 su2,1 su3,1 . . .
∑ ≤ UnitCap

su1,2 su2,2
∑ ≤ UnitCap

su1,3
∑ ≤ UnitCap

.∑
= 1

∑
= 1

The zone-units matrix looks identical. Next we need a Boolean variable
UnitUsedi that indicates whether ui is assigned any sensors/zones. This can
be achieved by constraints suji ≤ UnitUsedi and zuji ≤ UnitUsedi, for all j.
Observe that in principle even for unused units UnitUsedi can be set to one —
a possibility that will be excluded by the objective function.

For the constraints on the connections between units it is convenient to in-
crease InterUnitCap by one, and stipulate that every unit is connected to itself.
We then obtain a symmetric matrix of Boolean uuij variables, which can be used
to indicate whether unit i is connected to unit j:

1 uu1,2 uu1,3 . . .
∑ ≤ InterUnitCap + 1

uu2,1 1
∑ ≤ InterUnitCap + 1

uu3,1 . . . 1 . . .
∑ ≤ InterUnitCap + 1

In addition to enforcing that InterUnitCap is not exceeded, the entries in this
matrix are subject to the following constraints:

– uuij = uuji (symmetry); and
– uuij ≥ (suki+zulj)−1, for all connections (sk, zl) between sensors and zones

— if a sensor sk and a zone zl are connected yet assigned different units ui,
uj then these units are connected.

This model allows more connections between units than are actually needed, in
this case mandating a post-processing step for solutions.

As a last constraint we add that the number of units used is bounded from
below:

�max (|Sensors|, |Zones|)
2

� ≤
∑

j

UnitUsedj .

Finally, we add the objective function
∑

j UnitUsedj , subject to minimization.
As usual, first a linear relaxation with cost C is solved, and only then is the
problem solved over the integers, posting the cost C as a lower bound.

Optimization Methods for the Partner Units Problem 13

3.4 Constraint Satisfaction Problem

Finally, we model the Pup as a Csp by letting sensors and zones be variables
S = {s1, . . . , sn} and Z = {z1, . . . , zm}. For the domains we use (a numbering
of) the units U1, . . . , Un.

We post a global cardinality constraint gcc(Ui,[s1, . . . , sn],C) on the sen-
sors for every Ui , where C is a variable with domain {0, . . . , UnitCap}, and do
likewise for the zones. These constraints ensure that each unit occurs at most
UnitCap times in any assignment to S and Z.

Tracking connections between units via Boolean variables is done using a
matrix of Boolean uuij variables as in the integer programming model, but
using cardinality constraints to count the number of ones.

In addition for each connection (s, z) we post implicational constraints that
exclude the value j from the domain of sensor s if z is assigned to unit i and
uuij = 0 (and vice versa):

(s = Ui ∧ uuij = 0) → z
= Uj and (z = Ui ∧ uuij = 0) → s
= Uj

4 A Special Case: InterUnitCap = 2

In this section we focus on the case where InterUnitCap = 2. We first briefly
recall the fundamental ideas of our recent tractability results for this case; for the
details the interested reader is referred to [1]. We then show how the fundamental
ideas from this work can be incorporated into the Pup encodings presented
above.

4.1 A Specialized Algorithm for InterUnitCap = 2

The basic observation in the case InterUnitCap = 2 is that the unit graph in
a solution of a connected Pup instance is always either a path or a cycle. This
holds because the number of neighbors of a unit is bounded by two. Based on
this observation we have developed a non-deterministic algorithm DecPup that
decides the Pup. Basically, DecPup recursively guesses the contents of the units.
It turns out that this can be done in NLogSpace by exploiting the notion of a
path decomposition; this non-deterministic algorithm can then be turned into a
polynomial backtracking search procedure.

Let us now turn to those of the ideas we use for the DecPup algorithm that
can be incorporated into the other problem models: We first observe that cyclic
unit graphs are more general solution topologies than paths. Any solution that
is a path can be extended to a cycle, but the converse is clearly false. Hence, for
a fixed number of units used in the solution, we can assume a fixed cyclic layout
of the units throughout the search. By using iterative deepening search (on the
number of units used) we can find optimal solutions first.

In this context let us point out that branch-and-bound-search for optimal
solutions (again on the number of units used) does not work: e.g. a K6,6 graph
does not admit solutions with more than three units.

14 M. Aschinger et al.

Note also that finding optimal solutions gets more complicated if there are
multiple connected components in the input graph. DecPup can then still be
used to compute optimal solutions in polynomial time — but only if there are at
most logarithmically many connected components in the input graph. Part of the
problem is that any two connected components may either have to be assigned
to the same, or to two distinct unit graph(s). A priori it is unclear which of the
two choices leads to better results. E.g. if we assume that UnitCap = 2 then
two K3,3 should be placed on one cyclic unit graph, while two K6,6 must stand
alone.

Note that with cycles for unit graphs there are two kinds of rotational symme-
try: For any given solution with unit graph U1, . . . , Un, U1 there also are identical
solutions U2, . . . , Un, U1, U2, etc.; in addition, there is also Un, Un−1, . . . , U1, Un.
We can break this symmetry without additional computational cost by requiring
that

– the first sensor is assigned to unit U1; and
– the second sensor appears somewhere on the first half of the cycle.

We have prototypically implemented the DecPup algorithm in Java (for con-
nected graphs), and will use it below in the evaluation of the other encodings
for the case InterUnitCap = 2. The implementation features memoization of
no-good units to avoid the rediscovery of unsolvable subproblems, and two-step
forward-checking: Checking whether there is enough space for the open neigh-
bours of the current unit on the current plus the next unit (step one), and doing
the same for the open neighbours of the open neighbours (step two).

4.2 Adapting the Encodings to InterUnitCap = 2

To some extent the ideas presented above can be incorporated into the other prob-
lem models: If we use iterative deepening search, then we can assume a fixed cyclic
layout of the units for each depth. Then, the connections between units are given,
something that greatly simplifies the problem models. It also allows us to use sym-
metry breaking as defined in section 4.1 above. For example, in the constraint
model we can drop the Boolean matrix that tracks the connections between units,
and simplify the implicational constraints for a connection (s, z) to

s = Ui → z ∈ {Ui−1, Ui, Ui+1} and z = Ui → s ∈ {Ui−1, Ui, Ui+1}.
The adaptations for Asp and Sat are similar [1].

If we are not doing iterative deepening search, that is, the maximum avail-
able number of units in the model is given by the upper bound, then this does
not work, as it is not clear where to close the cycle. Especially for the integer
programming model this constitutes a challenge: If we use iterative deepening
we lose the objective function.

To guide the search, we can, by a simple greedy algorithm, compute an order-
ing of the variables that ensures that each sensor (or zone) has some predecessor
that has already been assigned to a unit; we assume that an arbitrary sensor

Optimization Methods for the Partner Units Problem 15

(or zone) is fixed initially. If variables are assigned in this order then the number
of possible unit choices per zone (or sensor) is bounded by three throughout
the search, instead of NoOfUnits. However, to the best of our knowledge neither
integer programming tools nor Asp- or Sat-solvers usually provide this level of
control over variable ordering to the user.

5 Evaluation

We have evaluated our encodings on a set of benchmark instances that we re-
ceived from our partners in industry. All experiments were conducted on a 3 GHz
dual core machine with 4 GB RAM running Fedora Linux, release 13 (Goddard).
In general in our experiments we have imposed a ten minute time limit for finding
solutions.

For the evaluation of the different encodings of the Pup we use the Sat-solver
MiniSat v2.0 [14], the constraint logic programming language ECLiPSe-Prolog
v6.0 [7], and Clingo v3.0 [3] from the Potsdam Answer Set Solving Collection
(Potassco). For evaluating the integer programming model we have used Cbc

v2.6.2 in combination with Clp v1.13.2 from the COIN-OR project [4], and
IBM’s Cplex v12.1 [5].

In the Asp, Sat and Csp models, as well as in DecPup, we use iterative
deepening search for finding optimal solutions, as this has proven to be the most
efficient. We did not try this in the integer programming model, as we would
lose the objective function in doing so.

The reader is advised to digest the results presented below with caution: We
are using both the Sat and the integer programming solvers out of the box,
whereas for the Csp model we employ the variable ordering heuristics outlined
in the previous section. Moreover, if InterUnitCap > 2, for the Asp model we
employ the following advanced feature: a portfolio solver Claspfolio, which is
a part of Potassco [3], comes with a machine learning algorithm (support vector
machine) that has been trained on a large set of Asp programs. Claspfolio

analyzes a new Asp program (in our case the Pup program), and configures
Clingo to run with options that have already proved successful on similar pro-
grams. It is likely that such machine learning techniques could also be developed
and fruitfully applied in the other frameworks.

5.1 Experimental Results

InterUnitCap = 2. All instances are based on rectangular floor plans, and all
instance graphs are connected. In all instances there is one zone per room, and by
default there are sensors on all doors. Only the grid-* and tri-* instances feature
external doors. For an illustration see Figure 2, which shows a rectangular 8× 3
floor plan with external doors on two sides of the building.

Apart from that, the instances are structured as follows:

– dbl-* consist of two rows of rooms with all interior doors equipped with a
sensor.

16 M. Aschinger et al.

– dblv-* are the same, only that there are additional zones that cover the
columns.

– tri-* are grids with only some of the doors equipped with sensors. There are
additional zones that cover multiple rooms.

– grid-* are not full grids, but some doors are missing, and there are no rooms
(zones) without doors.

The runtimes we obtained for the various problem encodings described above
are shown in seconds in Table 1 (a “*” indicates a timeout). The Cost column
contains the number of units in an optimal solution; a slash “/” in that column
indicates that no solution exists.

Table 1. Structured Problems with InterUnitCap = UnitCap = 2

Name |S| |Z| Edges Cost Csp Sat DecPup Asp Cbc Cplex

dbl-20 28 20 56 14 0.02 0.48 0.01 0.16 14.12 1.53

dbl-40 58 40 116 29 0.28 2.36 0.05 3.93 224.14 13.58

dbl-60 88 60 176 44 0.42 29.74 0.08 * * 213.58

dbl-80 118 80 236 59 1.14 * 0.16 * * 522.50

dbl-100 148 100 296 74 1.89 * 0.41 * * *

dbl-120 178 120 356 89 3.21 * 0.39 * * *

dbl-140 208 140 416 104 5.01 * 0.59 * * *

dbl-160 238 160 476 119 13.94 * 0.71 * * *

dbl-180 268 180 536 134 20.07 * 0.87 * * *

dbl-200 298 200 596 149 14.4 * 1.08 * * *

dblv-30 28 30 92 15 0.09 0.42 65.49 0.26 37.18 2.93

dblv-60 58 60 192 30 0.26 3.15 * 1.94 * *

dblv-90 88 90 292 45 0.82 12.54 * 27.35 * *

dblv-120 118 120 392 60 1.85 41.65 * 13.92 * *

dblv-150 148 150 492 75 3.48 20.97 * 29.54 * *

dblv-180 178 180 592 90 6.20 44.28 * 54.50 * *

tri-30 40 30 78 20 1.07 0.79 0.50 0.41 45.17 78.75

tri-32 40 32 85 20 0.64 0.74 * 0.26 55.20 4.66

tri-34 40 34 93 / 21.10 22.77 * 0.89 74.78 5.06

tri-60 79 60 156 40 158.49 315.42 114.08 4.40 * 108.01

tri-64 79 64 170 / * 379.36 * 43.88 * 76.26

grid-90 50 68 97 34 0.04 4.51 0.03 1.53 * 21.19

grid-91 50 63 97 32 0.10 * * 0.92 * 16.60

grid-92 50 65 97 33 0.49 * * 0.87 * 17.40

grid-93 50 58 97 29 0.13 2.68 * 1.75 * 13.41

grid-94 50 66 97 33 0.04 3.66 * 1.61 * *

grid-95 50 60 97 30 0.02 3.90 0.48 0.97 * 18.34

grid-96 50 62 97 31 0.07 3.30 * 0.87 * 13.62

grid-97 50 64 97 32 0.02 3.67 * 0.86 * 17.90

grid-98 50 59 97 30 0.03 * * 1.19 * 12.30

grid-99 50 65 97 33 0.03 * 202.48 1.16 * 20.35

Optimization Methods for the Partner Units Problem 17

Table 2. Structured Problems with InterUnitCap = 4 and UnitCap = 2

Name |S| |Z| Edges Cost Csp Sat Asp Cbc Cplex

tri-30 40 30 78 20 0.12 2.40 0.40 182.91 24.79

tri-32 40 32 85 20 0.14 1.91 0.66 270.27 20.84

tri-34 40 34 93 20 * 1.98 0.60 331.29 *

tri-60 79 60 156 40 0.52 * 11.07 * *

tri-64 79 64 170 40 * * 7.61 * *

tri-90 118 90 234 59 1.50 401.44 332.34 * *

tri-120 157 120 312 79 3.37 * * * *

grid-1 100 79 194 50 * 78.19 31.45 * *

grid-2 100 77 194 50 * 90.89 18.91 * *

grid-3 100 78 194 50 * 88.87 25.72 * *

grid-4 100 80 194 50 * 95.12 24.66 * *

grid-5 100 76 194 50 * 454.42 48.88 * *

grid-6 100 78 194 50 * 204.85 9.15 * *

grid-7 100 79 194 50 * 112.36 12.89 * *

grid-8 100 78 194 50 * * 11.89 * *

grid-9 100 76 194 50 * 91.62 19.71 * *

grid-10 100 80 194 50 * 545.16 13.54 * *

InterUnitCap > 2. For the general case we have also tested our encodings on a
set of benchmark instances where InterUnitCap = 4 that we obtained from our
partners in industry:

– tri-* are exactly as before, only with InterUnitCap = 4.
– grid-* are as before, only that a bigger number of doors exists.

5.2 Analysis

Any conclusions drawn from our experimental results have to be qualified by
the remark that, of course, in every solution framework there are many different
problem models, and there is no guarantee that our problem models are the best
ones possible.

Let us begin our analysis of the results by highlighting a peculiarity of the Pup:
While it is possible to construct instances that require more than the minimum
number of units, it is not straight-forward to do so, and such instances also
appear to be rare in practice: In our experiments in no solution are there more
units than the bare minimum required. It is clear that iterative deepening search
thrives on this fact, whereas the integer programming model suffers.

InterUnitCap = 2. The combination of assuming a fixed cyclic unit graph to-
gether with iterative deepening search resulted in drastic speedups for the Asp,
Sat, and Csp solvers. Symmetry breaking did not have much effect — except
on the unsolvable instances.

The Asp and the Sat encoding show broadly similar behavior: Both Clingo

and MiniSat use variations of the DPLL-procedure [6] for reasoning. Oddly,

18 M. Aschinger et al.

they even both get faster at some point as problem size increases on the dblv-*
instances. However, Clingo does significantly better on the grid-like instances.
Interestingly, machine learning did not help for the Asp encoding specialized to
InterUnitCap = 2; hence the results shown were obtained using both solvers out
of the box.

For the Csp encoding the variable ordering is the key to the good results: With-
out the variable ordering the Csp model performs quite poorly. The absence of a
similar variable selection mechanism from both Asp and Sat in our experiments
might explain the surprising superiority of Csp on most benchmarks.

The inconsistent results for DecPup are particularly striking. On the one
hand, DecPup performs excellently on the dbl-* instances. But in general, it
disappoints. Possibly this might be due to the following: DecPup has a “local”
perspective on the problem, that is, it only can see the current and past units;
the subsequent units are only created at runtime. In all the other encodings all
units are present from the beginning, something which, in one way or another,
facilitates propagating the current variable assignment to other units.

The Ip encoding is not yet fully competitive. It particularly struggles with
the dblv-* instances. In general, the commercial Cplex is at least one order of
magnitude faster than the open source Cbc.

It is also interesting to compare the dbl-* with the dblv-* instances, as
the latter are obtained from the former by adding constraints. Both Clingo

and MiniSat thrive on the additional constraints, contrary to ECLiPSe, Cbc,
Cplex and DecPup.

InterUnitCap > 2. In this setting, for finding solutions the symmetry breaking
methods from section 2.6 did increase computation time for the Csp, the Sat,
and the Ip model. However, symmetry breaking again does help when proving an
instance unsatisfiable. The results in Table 2 were obtained without symmetry
breaking.

If Claspfolio’s machine learning database is not used to configure options
of Clingo, then the two DPLL-based programs again perform quite similar,
with Clingo slightly having the edge (results not shown). With machine learning
Clingo clearly is the winner, with the main benefits stemming from the follow-
ing: Use the VSIDS heuristics [15] instead of the BerkMin heuristics [10], and
exploit local restarts [16]. Note that MiniSat also uses the VSIDS heuristics.

Interestingly, the Csp-encoding now disappoints. Given that the same variable
ordering is used, this may have to be attributed to insufficient propagation when
tracking the connections between units.

Again our Ip encoding is not on par yet. But for this encoding comparing
the instances tri-30,32,34 in Tables 1 and 2 is particularly instructive: This is
basically the same model in both settings, only that in the latter case there are
more variables due to the higher upper bound on the number of required units.

6 Future Work

There is still significant work to be done on the Pup: Almost all interesting com-
plexity questions are still open, and a thorough investigation of these questions

Optimization Methods for the Partner Units Problem 19

should eventually lead to better algorithms and encodings for the Pup. It should
also be possible to prove better upper bounds, in particular ones that depend on
UnitCap; especially the integer programming model would benefit from this. It
would be interesting to see what the variable ordering heuristics can do for Sat

and Asp. More generally, the major challenge is to find stronger problem models
in the various frameworks and to improve the implementation of DecPup, the
only algorithm guaranteed to run in polynomial time.

Acknowledgment. We greatly appreciate the helpful comments from the
anonymous reviewers.

References

1. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon,
A., Thorstensen, E.: Tackling the Partner Units Problem. Tech. Rep. RR-10-28,
Computing Laboratory, University of Oxford (2010), available from the authors

2. Third International Answer Set Programming Competition 2011 (2011), https://
www.mat.unical.it/aspcomp2011/

3. The Potsdam Answer Set Solving Collection, http://potassco.sourceforge.net/
4. COIN-OR CLP/CBC IP solver, http://www.coin-or.org/
5. IBM ILOG CPLEX IP solver, http://www.ibm.com/
6. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal

of the ACM 7(3) (1960)
7. ECLiPSe-Prolog, http://eclipseclp.org/
8. Falkner, A., Haselböck, A., Schenner, G.: Modeling Technical Product Configu-

ration Problems. In: Proceedings of the Configuration Workshop at ECAI 2010
(2010)

9. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP 1988 (1988)

10. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proceedings
of DATE 2002 (2002)

11. Hooker, J.N.: Integrated Methods for Optimization. Springer, New York (2006)
12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:

The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3) (2006)

13. Meringer, M.: Regular Graphs Page, http://www.mathe2.uni-bayreuth.de/

markus/reggraphs.html

14. Minisat SAT solver, http://www.minisat.se
15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-

ing an Efficient SAT Solver. In: Proceedings of DAC 2001 (2001)
16. Ryvchin, V., Strichman, O.: Local restarts. In: Kleine Büning, H., Zhao, X. (eds.)

SAT 2008. LNCS, vol. 4996, pp. 271–276. Springer, Heidelberg (2008)
17. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model

semantics. Artificial Intelligence 138(1-2) (2002)
18. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints.

In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

Manipulating MDD Relaxations for

Combinatorial Optimization

David Bergman, Willem-Jan van Hoeve, and John N. Hooker

Tepper School of Business, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, U.S.A.

{dbergman,vanhoeve}@andrew.cmu.edu, john@hooker.tepper.cmu.edu

Abstract. We study the application of limited-width MDDs (multi-
valued decision diagrams) as discrete relaxations for combinatorial
optimization problems. These relaxations are used for the purpose of
generating lower bounds. We introduce a new compilation method for
constructing such MDDs, as well as algorithms that manipulate the
MDDs to obtain stronger relaxations and hence provide stronger lower
bounds. We apply our methodology to set covering problems, and evalu-
ate the strength of MDD relaxations to relaxations based on linear pro-
gramming. Our experimental results indicate that the MDD relaxation
is particularly effective on structured problems, being able to outper-
form state-of-the-art integer programming technology by several orders
of magnitude.

1 Introduction

Binary Decision Diagrams (BDDs) [1, 19, 6] provide compact graphical rep-
resentations of Boolean functions, and have traditionally been used for circuit
design and formal verification [17, 19]. More recently, however, BDDs and their
generalization Multivalued Decision Diagrams (MDDs) [18] have been used in
Operations Research for a variety of purposes, including cut generation [3], ver-
tex enumeration [5], and post-optimality analysis [12, 13].

In this paper, we examine the use of BDDs and MDDs as relaxations for com-
binatorial optimization problems. Relaxation MDDs were introduced in [2] as a
replacement for the domain store relaxation, i.e., the Cartesian product of the
variable domains, that is typically used in Constraint Programming (CP). MDDs
provide a richer data structure that can capture a tighter relaxation of the fea-
sible set of solutions, as compared with the domain store relaxation. In order to
make this approach scalable, MDD relaxations of limited size are applied. Var-
ious methods for compiling these discrete relaxations are provided in [14]. The
methods described in that paper focus on iterative splitting and edge filtering
algorithms that are used to tighten the relaxations. Similar to classical domain
propagation, such MDD propagation algorithms have been developed for indi-
vidual (global) constraints, including inequality constraints, equality constraints,
alldifferent constraints and among constraints [14, 15].

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 20–35, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Manipulating MDD Relaxations for Combinatorial Optimization 21

The focus of the current work is the application of limited-width MDD relax-
ations in the context of optimization problems. We explore two main topics. Firstly,
we investigate a new method for building approximate MDDs. We introduce a
top-down compilation method based on approximating the set of completions of
partially assigned solutions. This procedure differs substantially from the ideas in
[2] in that we do not compile the relaxation by splitting vertices, but by merging
vertices when the size of the partially constructed MDD grows too large.

Secondly, and more specific to optimization, we introduce a method to improve
the lower bound provided by an MDD relaxation. It is somewhat parallel to a
cutting plane algorithm in that it “cuts off” infeasible solutions so as to tighten
the bound. Unlike cutting planes, however, it can begin with any valid lower
bound, perhaps obtained by another method, and tighten it. The bound becomes
tighter as more time is invested.

The resulting mechanism is a pure inference algorithm that can be used anal-
ogously to a pure cutting plane algorithm. We envision, however, that MDD
relaxations would be most profitably used as a bounding technique in conjunc-
tion with a branch-and-bound search, much as separation algorithms are used
in integer programming. Nonetheless we find in this paper that, even as a pure
inference algorithm, MDD relaxation can outperform state-of-the-art integer pro-
gramming technology on specially structured instances.

One advantage of an MDD relaxation is that it is always easy to solve (as a
shortest path problem) whether the original problem is linear or nonlinear. This
suggests that MDDs might be most competitive on nonlinear discrete problems.
Nonetheless we deliberately put MDDs at a competitive disadvantage by ap-
plying them to a problem with linear inequality constraints—namely, to the set
covering problem, which is well suited to integer programming methods.

We compare the strength of bounds provided by MDDs with those provided
by the linear programming relaxation and cutting planes. We also compare the
speed with which MDDs (used as a pure inference method) and integer program-
ming solve the problem. We find that MDDs are much superior to conventional
integer programming when the ones in the constraint matrix lie in a relatively
narrow band. That is, the matrix has relatively small bandwidth, meaning that
the maximum distance between any two ones in the same row is limited.

The bandwidth of a set covering matrix can often be reduced, perhaps signif-
icantly, by reordering the columns. Thus MDDs can solve a given set covering
problem much more rapidly than integer programming if its variables can be
permuted to result in a relatively narrow bandwidth. Algorithms and heuristics
for minimum bandwidth ordering are discussed in [20, 7–9, 11, 21–23].

The remainder of the paper is organized as follows. In Section 2 we define
MDDs more formally and introduce notation. In Section 3 we describe a new
top-down compilation method for creating relaxation MDDs. In Section 4 we
present our value enumeration scheme to produce lower bounds. In Section 5 we
discuss applying the ideas of the paper to set covering problems. In Section 6
we report on experiments results where we apply the ideas of the paper to set
covering problems. We conclude in Section 7.

22 D. Bergman, W.-J. van Hoeve, and J.N. Hooker

2 Preliminaries

In this work a Multivalued Decision Diagram (MDD) is a layered directed acyclic
multi-graph whose nodes are arranged in n + 1 layers, L1, L2, . . . , Ln+1. Layers
L1 and Ln+1 consist of single nodes; the root r and the terminal t, respectively.
All arcs in the MDD are directed from nodes in layer j to nodes in layer j + 1.

In the context of Constraint Satisfaction Problems (CSPs) or Constraint Op-
timization Problems (COPs), we use MDDs to represent assignments of values
to variables. A CSP is specified by a set of constraints C = {C1, C2, . . . Cm} on a
set of variables X = {x1, x2, . . . , xn} with respective finite domains D1, . . . , Dn,
and a COP is specified by a CSP together with an objective function f to be
minimized. By a solution to a CSP (COP) we mean an assignment of values to
variables where the values assigned to the variables appear in their respective
domains. By a feasible solution we mean a solution that satisfies each of the
constraints in C, and the feasible set is the set of all feasible solutions. For a
COP, an optimal solution is a feasible solution x∗ such that for any other feasible
solution x̃, f(x∗) ≤ f(x̃).

We use MDDs to represent a set of solutions to a CSP, or COP, as follows.
We let the layers L1, . . . , Ln correspond to the problem variables x1, . . . , xn,
respectively. Node u ∈ Lj has label var(u) = j, representing its variable index.
Arc (u, v) with var(u) = j is labeled with arc domain du,v, by an element of the
domain of variable xj , i.e., du,v ∈ Dj . All arcs directed out of a node must have
distinct labels.

A path p from node ui to node uk, i < k, along arcs ai, ai+1, . . . , ak−1

corresponds to the assignment of the values daj to the variables xj , for j =
i, i+1, . . . , k−1. In particular, we see that any path from the root r to the termi-
nal t, p = (a1, . . . , an) , corresponds to the solution xp, where xp

j = daj . We note
that as an MDD is a multi-graph, two paths p1, p2, along nodes r = u1, . . . , un, t
may correspond to multiple solutions as there may be multiple arcs from uj to
uj+1 corresponding to different assignments of values to the variable xj .

The set of solutions represented by MDD M is Sol(M) = {xp|p ∈ P} where
P is the set of paths from r to t. The width of layer Lj is given by ωj = |Lj |,
and the width of MDD M is given by ω(M) = maxj∈{1,2,...,n} ωj . The size of M
is denoted by |M |, the number of nodes in M .

For a given CSP P , let X(P) be the set of feasible solutions for P . An exact
MDD M for P is any MDD for which Sol(M) = X(P). A relaxation MDD Mrel

for P is any MDD for which Sol(Mrel) ⊇ X(P). For the purposes of this paper,
relaxation MDDs are of limited width, in that we require that ωj ≤ W , for some
predefined W . This ensures that the relaxation has limited size which is necessary
since even for single constrained problems, the feasible set may correspond to
an MDD of exponential size (for example inequality constrained problems [4]).

Finally, we note that for a large class of objective functions (e.g., for separable
functions), optimizing over the solutions represented by an MDD corresponds
to finding a shortest path in the MDD [2]. For example, given a linear objec-
tive function min cx, we associate with each arc (u, v) in the MDD a cost c(u, v),

Manipulating MDD Relaxations for Combinatorial Optimization 23

t

r
x1

x2

x3

x4

x5

x6

1 2

3 4 5 6

7 8 9 10

11 12 13 14

15 16

Fig. 1. Exact MDD for Example 1

where c(u, v) = cvar(u) · du,v. Then it is clear that a shortest path from r to t
corresponds to the lowest cost solution represented by the MDD.

Example 1. As an illustration, consider the CSP consisting of binary variables
x1, x2, . . . , x6, and constraints

C1 : x1 + x2 + x3 ≥ 1,
C2 : x1 + x4 + x5 ≥ 1,
C3 : x2 + x4 + x6 ≥ 1.

An exact MDD representation of the feasible set is given in Fig. 1, where arc
(u, v) being solid/dashed corresponds to the arc setting var(u) to 1/0.

3 Top-Down MDD Compilation

As discussed above, there are several methods that can be used to construct
both exact and approximate MDDs. In this section we propose a new top-down
method for creating approximate MDDs.

3.1 Exact Top-Down Compilation

We first discuss an exact top-down compilation method, which is based on the
notion of node equivalence.

Given a path p from r to u, let F (p) be the set of feasible completions of
the corresponding partial assignment. That is, if (x1, . . . , xk) = (d1, · · · , dk) = d
is the partial assignment represented by p, then F (p) = {y ∈ Dk+1 × · · · ×
Dn|(d, y) is feasible }. We say that two paths p, p′ from r to the same layer are
equivalent if F (p) = F (p′).

Analogously, we define F (u) to be the set of completions at node u, so that
F (u) =

⋃
p∈P F (p), where P is the set of paths from r to u. We note that in an

exact MDD all paths terminating at a node u are equivalent.
A node equivalence test determines when two nodes u, u′ on the same layer

have the same set of feasible completions. In other words, this test determines

24 D. Bergman, W.-J. van Hoeve, and J.N. Hooker

when F (u) = F (u′). Testing whether two nodes have the same set of feasible
completions requires maintaining a state Iu at each node [15]. The state of node
u should contain all facts about the paths ending at u to run an equivalence test.
In addition, it is useful to know when a partial assignment cannot be completed
to a feasible solution for a CSP. In such a case, we let the state of such a path,
or more generally a node, be 0̂, to signal that there are no completions of this
path/node.

Now, using a properly defined node equivalence test, one can create an exact
MDD using Algorithm 1. Given that layers L1, . . . , Lj have been created, we
examine the nodes in Lj one by one. When examining node u, for each domain
value d ∈ Dj we calculate the new state Inew that results from adding xj = d
to the partial paths ending at u. If no other nodes on layer Lj+1 have the same
state (i.e. the same set of feasible completions) we add a new node v to Lj+1

and the arc (u, v) with arc domain d, and set Iv = Inew. If however there is some
node w ∈ Lj+1 with Iw = Inew we know that all paths starting at r, ending at u
and having xj = d will have the same set of feasible completions as w. Therefore,
we simply add the arc (u, w) with arc domain d.

Algorithm 1. Top-Down MDD Compilation
1: L1 = {r}
2: for j = 1 to n do
3: Lj+1 = ∅
4: for all u ∈ Lj do
5: for all d ∈ D(xj) do
6: calculate Inew, the state for all paths starting at r, ending at u, and including

xj = d
7: if Inew �= 0̂ then
8: if there exists w ∈ Lj+1 with Iw = Inew then
9: add arc (u, w) with du,w = d

10: else
11: add node v to Lj+1

12: add arc (u, v) with du,v = d
13: set Iv = Inew

14: end if
15: end if
16: end for
17: end for
18: end for

We will be modifying Algorithm 1 later to create approximate MDDs. First,
however, we discuss specific exact MDDs for the feasible set satisfying a single
equality constraint. Such MDDs will be applied in our value enumeration method
for tightening lower bounds, presented in Section 4.

Lemma 1. Let P be a CSP on n binary variables with the single constraint∑n
j=1 cjxj = c, for a given integer c, and integer coefficients cj ≥ 0. An exact

MDD for P has maximum width c + 1.

Manipulating MDD Relaxations for Combinatorial Optimization 25

Algorithm 2. Top-Down Relaxation Compilation
1: while |Sj+1| > W do
2: select nodes u1, u2 ∈ Sj+1

3: create node u
4: for every arc directed at u1 or u2 redirect arc to u with the same arc domain
5: I(u) = I(u1) ⊕ I(u2)
6: Sj+1 ← Sj+1\{u1, u2} ∪ {u}
7: end while

Proof. We apply Algorithm 1. Given a node u, let p be any path from r to u, and
let a1, . . . , ak be the arcs along this path, which set variables x1, . . . , xk to the
arc domain values da1 , . . . , dak

. We define Iu =
∑k

j=1 cj · daj . Using this label as
the state of node u we see that two nodes u and v have the same set of feasible
completions if and only if Iu = Iv. In addition, if Iw ≥ c + 1 for some node w,
it is clear that all paths from r to w have no feasible completions. Therefore we
can have at most c + 1 nodes on any layer. ��
We note that Lemma 1 is very similar to the classical pseudo-polynomial char-
acterization of knapsack constraints.

3.2 Approximate Top-Down Compilation

In general, an exact MDD representation of all feasible solutions to a CSP may
be of exponential size, and therefore generating exact MDDs for combinatorial
optimization problems is not practical. In light of this we use relaxation MDDs to
approximate the set of feasible solutions. In this section we outline one possible
method for generating approximate MDDs, by modifying Algorithm 1.

In order to create a relaxation MDD we merge nodes during the top-down
compilation method presented in Algorithm 1 when the width of layer j exceeds
a certain preset maximum allotted width W . To accomplish this, we select two
nodes and modify their states in a relaxed fashion, ensuring that all feasible
solutions will remain in the MDD when it is completed. More formally, if we
select nodes u1 and u2 to merge, we need to modify their states Iu1 , Iu2 in such
a way as to make them equivalent with respect to the equivalence test used to
merge nodes during the top-down compilation. We define a certain relaxation
operation ⊕ on the state of nodes as follows.1 If for nodes u1 and u2 we change
their associated states to I(u1)⊕I(u2), any feasible completion of the paths from
the root to u1 and u2 will remain when the terminal is reached. This is outlined
in Algorithm 2, which is to be inserted between lines 17 and 18 in Algorithm 1.
In Section 5 we describe such an operation in detail, for set covering problems.

The quality of the relaxation MDD generated using the modification of Algo-
rithm 1 hinges largely on the method used for selecting two nodes to combine.
We propose several heuristics for this choice in the following table:
1 Here we follow the notation ⊕ that was used in [15] for their analogous operation

for aggregating node information.

26 D. Bergman, W.-J. van Hoeve, and J.N. Hooker

Name Node selection method

H1 select u1, u2 uniformly at random among all pairs in Sj+1

H2 select u1, u2 such that f(u1), f(u2) ≥ f(v), ∀v ∈ Sj+1, v
= u1, u2

H3 select u1, u2 such that Iu1 and Iu2 are closest among all pairs in Sj+1

The rationale behind each of the methods are the following. Method H1 calls
for randomly choosing which nodes to combine. Randomness often helps in com-
binatorial optimization and applying it in this context may work as well. H2

combines nodes that have the greatest shortest path lengths. For this we let
f(u) be the shortest path length from the root to u in the partially constructed
MDD. Choosing such a pair of nodes allows for approximating the set of feasible
solutions in parts of the MDD where the optimal solution is unlikely to lie, and
retaining the exact paths in sections of the MDD where the optimal solution is
likely to lie. H3 combines nodes that have similar states. For particular types
of states and equivalence tests, we must determine the notion of closest. This
method is sensible because these nodes will most likely have similar sets of com-
pletions, allowing the relaxation to better capture the set of feasible solutions.

4 Value Enumeration

We next discuss the application of MDD relaxations for obtaining lower bounds
on the objective function, in the context of COPs. We propose to obtain and
strengthen these bounds by means of successive value enumeration. Value enu-
meration is a method that can be used to increase any lower bound on a COP
via a relaxation MDD.

Suppose we have generated a relaxation MDD Mrel. We then generate an MDD
representing every solution in Mrel with objective function value equal to the best
lower bound. There are several ways to accomplish this, but in general this MDD
can have exponential size. However, for some important cases the MDD represent-
ing every solution equal to a particular value has polynomial size.

For example, suppose we have a COP with objective function equal to the
sum of the variables, i.e., f(x) =

∑n
j=1 xj , where we assume that the variable

domains are integral. Given a lower bound zLB, the reduced MDD for the set of
solutions with objective value equal to zLB, MzLB , has width ω(MzLB) = zLB+1,
by Lemma 1. The same holds for other linear objective functions as well.

In any case, suppose we have the desired MDD MzLB , where Sol(MzLB) is
the set of all solutions with objective value equal to zLB. Now, consider the set
of solutions S = Sol(MzLB) ∩ Sol(Mrel). As this is the intersection between the
solutions represented by the relaxation and every solution equal to the lower
bound zLB, showing that there is no feasible solution in S allows us to increase
the lower bound.

Constructing an MDD M representing the set of solutions S = Sol(MzLB) ∩
Sol(Mrel) can be done in time O(|MzLB |·|Mrel|) and has maximum width ω(M̃) ≤
ω(MzLB) · ω(Mrel) [6]. As the width of MzLB has polynomial size for certain

Manipulating MDD Relaxations for Combinatorial Optimization 27

objective functions and the width of Mrel is bounded by some preset W , the
width of the resulting MDD will not grow too large in these cases.

The value enumeration scheme proceeds by enumerating all of the solutions in
M . If we find a feasible solution, we have found a witness for our lower bounds.
Otherwise, we can increase the lower bound by 1. Of course, this method is only
practical if we can enumerate these paths efficiently.

Observe that we do not need to start the value enumeration scheme with the
value of the shortest path in the original MDD. In fact, we can start with any
lower bound. For example, we can use LP to find a strong lower bound and then
apply this procedure to any relaxation MDD.

As described above, in order to increase the bound, we are required to certify
that none of the paths in M correspond to feasible solutions. Of course this can
be done by a naive enumeration of all of the paths in M. However, we use MDD-
based CP, as described in [2], in unison with a branching procedure to certify
this. In particular we apply MDD filtering algorithms to reduce the size of the
MDD MzLB , based on the constraints that constitute the COP. In Section 5.3
we will describe a new MDD filtering algorithm that we apply to set covering
problems.

5 Application to Set Covering

In this section we describe how to apply the ideas of the paper to set covering
problems. We describe a node equivalence test and the state that is necessary to
carry out the test. We also describe the operation ⊕ that can be used to change
the states of the nodes so that we can generate relaxation MDDs.

5.1 Equivalence Test

The well-studied set covering problem is a COP with n binary variables and m
constraints, each on a subset Ci of the variables, which require that

∑
j∈Ci

xj ≥
1, i ∈ {1, . . . , m}. The objective is to minimize the sum of the variables (or a
weighted sum).

The first step in applying our top-down compilation method is defining an
equivalence test between partial assignments of values to variables. For set cov-
ering problems we do this by equating a set covering instance with its equivalent
logic formula. Each constraint Ci can be viewed as a clause ∨j∈Cixj and the set
covering problem is equivalent to satisfying F =

∧
i ∨j∈Cixj .

Using this interpretation of set covering problems, one can develop a complete
equivalence test by removing clauses that are implied by other clauses. Clause
C absorbs clause D if all of the literals of C are contained in D. In such a
case, satisfying clause C implies that clause D will be satisfied. As an example,
consider the two clauses C = (x1 ∨ x2) and D = (x1 ∨ x2 ∨ x3). It is clear that
if some literal in C is set to true then clause D will be satisfied.

Therefore, to develop the equivalence test, for any partial assignment x we
delete any clause Ci for which there exists a variable in the clause that is already

28 D. Bergman, W.-J. van Hoeve, and J.N. Hooker

r

1 2

3 4 5 6

∅ ∅ {C3} {C3} {C2} {C2} {C2, C3}
7 8 9 10 11 12 13

r

1 2

3 4 5 6

7’ 8’ 9’ 10’

∅ {C3} {C2} {C2, C3}

r

1 2

3 4 5 6

7’ 8’

∅ {C3} {C2}
9”

(a) (b) (c)

Fig. 2. (a) Exact MDD before combining nodes with the same state, (b) Exact MDD
after combining nodes with the same state, (c) MDD after merging node 9’ and 10’
into 9”, making a partially constructed relaxation

set to 1, and then delete all absorbed clauses, resulting in the logical formula
F (x). We let Ix be the set of clauses which remain in F (x). Doing so ensures that
two partial assignments x1 and x2, will have the same set of feasible completions
if and only if Ix1 = Ix2 . Note that since each literal is positive in all clauses of a
set covering instance, this test can be performed in polynomial time [16].

To create an exact MDD for a set covering instance (using Algorithm 1), we
let the state Iu at node u be equal to Ix for the partial assignment given by
the arc domains on all paths from the root to u. Two nodes u and v will have
the same set of feasible completions if and only if Iu = Iv, and so the node
equivalence test simply compares Iu with Iv.

Example 2. Continuing Example 1, we interpret the constraints C1, C2, and C3

as set covering constraints. In Fig. 2(a) we see the result of applying the top-down
compilation algorithm (following the variable order x1, x2, . . . , x6) and never
combining nodes based on their associated states , for the first three layers of the
MDD. Below the bottom nodes, we depict the states of the partially constructed
paths ending at those nodes. For example, along this path (r, 2, 5, 11), variables
x2 and x3 are set to 1. Therefore, constraints C1 and C3 are satisfied for any
possible completion of this path, and so the state at node 11 is C2. Since node
11 and node 12 have the same state, we can combine these nodes into node 9’,
as shown in Fig. 2(b). Similarly, nodes 7 and 8 are combined into node 7’ and
nodes 9 and 10 are combined into node 8’.

5.2 Relaxation Operation

We next discuss our relaxation operator ⊕ that is applied to merge two nodes in
a layer. For set covering problems, we let ⊕ represent the typical set intersection.
As an illustration, for the instance in Example 2, suppose we decided that we
want to decrease the width of layer 4 by 1. We would select two nodes (in
Fig. 2(b) we select nodes 9’ and 10’) and combine them (making node 9” as seen
in Fig. 2(c)), modifying their states to ensure that all feasible paths remain upon
completing the MDD. Notice that by taking the intersection of the states of the
nodes 9’ and 10’ we now label 9” with C2. Before merging the nodes, all partial

Manipulating MDD Relaxations for Combinatorial Optimization 29

paths ending at node 10’ needed a variable in both constraint C2 and C3 to be
set to 1. After taking the intersection, we are relaxing this condition, and only
require that for all partial paths ending at 9”, all completions of this path will
set some variable in constraint C2 to 1, ignoring that this needs to also happen
for constraint C3.

5.3 Filtering

As discussed above, during the value enumeration procedure, it is desirable to
perform some MDD filtering to decrease the search space. This filtering can be
applied to arc domain values, as described in [2], but also to the states repre-
sented in the nodes themselves, as we will describe here in the context of set
covering problems.

We associate two 0/1 m-dimensional state variables, s(v), z(v), to each node
v in the MDD. The value s(v)i will be 1 if for all paths from the root to v, there
is no variable in constraint Ci which is set to 1. Similarly, z(v)i will be 1 if for
all paths from v to the terminal, there is no variable in Ci which is set to 1.

Finding the values s(v)i, z(v)i is easily accomplished by the following sim-
ple algorithm. Start with s(r)i = 1 for all i. Now, let node v have parents
u1, u2, . . . , uk, and each edge (up, u) fixes variable xj to value vp ∈ {0, 1}. Then,

s(v)i =
k∏

p=1

s′(up)i,

where

s′(up)i =
{

0 if xj ∈ Ci and vp = 1
s(up)i otherwise

The values z(v)i are calculated in the same fashion, except switching the
direction of all arcs in the MDD and starting with z(t)i = 1, where t is the
terminal of the MDD.

A node v can now be eliminated whenever there is an index i such that
s(v)i = z(v)i = 1. This is because for all paths from r to v there is no variable
in Ci set to 1, and on all paths from v to t, there is no variable in Ci set to 1.

We note here that as in domain store filtering, certain propagators for MDDs
are idempotent, in that reapplying the filtering algorithm with no additional
changes results in no more filtering. The filtering algorithm presented here is not
idempotent, i.e, applying it multiple times could result in additional filtering.
In our computational experiments we address how this impacts the efficiency of
the overall method.

6 Experimental Results

In this section, we present experimental results on randomly generated set cov-
ering instances. Our results provide evidence that relaxations based on MDDs

30 D. Bergman, W.-J. van Hoeve, and J.N. Hooker

perform well when the constraint matrix of a set covering instance has a small
bandwidth. We test this by generating random set covering instances with vary-
ing bandwidths and comparing solution times via pure-IP (using CPLEX), pure-
MDD, and a hybrid MDD-IP method.

In all of the reported results, unless specified otherwise, we apply our MDD-
based algorithm until it finds a feasible solution. That is, we solve these set
covering problems by continuously improving the relaxation through our value
enumeration scheme until we find a feasible (optimum) solution.

6.1 Bandwidth and the Minimum Bandwidth Problem

The bandwidth of a matrix A is defined as

bw(A) = max
i∈{1,2,...,m}

{ max
j,k:ai,j ,ai,k=1

{j − k}}.

The bandwidth represents the largest distance, in the variable ordering given by
the constraint matrix, between any two variables that share a constraint. The
smaller the bandwidth, the more structured the problem, in that the variables
participating in common constraints are close to each other in the ordering. The
minimum bandwidth problem seeks to find a variable ordering that minimizes
the bandwidth [20, 7–9, 11, 21–23]. This underlying structure, when present in
A, can be captured by MDDs and results in good computational performance.

6.2 Problem Generation

To test the statement that MDD based relaxations provide strong relaxations for
structured problems, we generate set covering instances with a fixed constraint
matrix density d (the number of ones in the matrix divided by n · m) and vary
the bandwidth bw of the constraint matrix.

We generate random instances with a fixed number of variables n, constraint
matrix density d, and bandwidth bw, where each row i has exactly k = d · n
ones. For constraint i the k ones are chosen uniformly at random from variables
xi+1, xi+2, . . . , xi+bw As an example, a constraint matrix with n = 9, d = 1

3 and
bw = 4 may look like

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
0 0 1 0 1 1 0 0 0
0 0 0 1 0 1 1 0 0
0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

As bw grows, the underlying staircase-like structure of the instances dissolves.
Hence, by increasing bw, we are able to test the impact of the structure in the
set covering instances on our MDD-based approach.

Consider the case when bw = k. For such problems, as A is totally unimodular
[10], the LP optimal solution will be integral, and so the corresponding IP will

Manipulating MDD Relaxations for Combinatorial Optimization 31

solve the problem at the root node. Similarly, we show here that the set of feasible
solutions can be exactly represented by an MDD with width bounded by m +1.
In particular, for any node u created during the top-down compilation method,
Iu must be of the form (0, 0, . . . , 0, 1, 1, . . . , 1). This is because, given any partial
assignment fixing the top j variables, if some variable in constraint Ci is fixed to
1, then for any constraint Ck, with k ≤ i, there must be some variable also fixed
to 1. Hence, ω(M) ≤ m+1. Therefore, such problems are also easily handled by
MDD-based methods. Increasing the bandwidth, however, destroys the totally
unimodular property of A and the bounded width of M . Therefore, increasing
the bandwidth allows us to test how sensitive the LP and the relaxation MDDs
are to changes in the structure of A.

6.3 Evaluating the MDD Parameters

In Section 3.2 we presented three possible heuristics for selecting nodes to merge.
In preliminary computational tests, we found that using the heuristic based
on shortest partial path lengths, H2, seemed to provide the strongest MDD
relaxations, and so we employ this heuristic.

The next parameter that must be fixed is the preset maximum width W that
we allow for the MDD relaxations. Each problem (and even more broadly for
each application of MDD relaxations to CSP/COPs) has a different optimal
width. To test for an appropriate width for this class of problems, we generate
100 instances with n = 100, k = 20 and bw = 35.

In Figure 3(a) we report the average solution time, over the 100 instances, for
different maximum allowed widths W . Near W = 35 we see the fastest solution
times, and hence for the remainder of the experimental testing we fix W at
35. We note here that during our preliminary computational tests, the range of
widths that seemed to perform best was W ∈ [20, 40].

Another parameter of interest is the number of times we allow the filtering
algorithm to run before branching. As discussed in Section 5.3 the filtering algo-
rithm presented above for set covering problems is not idempotent and applying
the filtering once or for several rounds has different impacts on the solution time.
In Figure 3(b) we report solution time versus the number of rounds of filtering
averaged over the 100 instances with W = 35. Applying the filtering algorithm
once yielded the fastest solution times and so we use this for the remainder of
the experiments.

6.4 Evaluating the Impact of the Bandwidth

Next we compare the performance of our MDD-based approach with IP. We
also compare the performance of these two methods with a hybrid MDD/IP
approach. For the hybrid method, the MDD algorithm runs for a fixed amount
of time and then passes the lower bound on the objective function to IP as a
initial lower bound on the objective function.

We report results for random instances with n = 250, k = 20 and bandwidth
bw ∈ {22, 24, . . . , 44} (20 instances per configuration). In Figure 4(a) we show,

32 D. Bergman, W.-J. van Hoeve, and J.N. Hooker

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

so
lu

tio
n

tim
e

(s
)

maximum width

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4

av
er

ag
e

so
lu

tio
n

tim
e

(s
)

number of rounds

(a) (b)

Fig. 3. (a) Maximum width W vs. solution time, (b) Number of rounds of filtering vs.
solution time

 0

 5

 10

 15

 20

 22 24 26 28 30 32 34

nu
m

be
r

of
 in

st
an

ce
s

so
lv

ed

bandwidth

IP
MDD

HYBRID

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 20 25 30 35 40 45

av
er

ag
e

lo
w

er
 b

ou
nd

 a
ft

er
 1

 m
in

ut
e

bandwidth

IP
MDD

HYBRID

(a) (b)

Fig. 4. (a) Number of instances solved in 1 minute for different bandwidths, (b) Aver-
age lower bound in 1 minutes for different bandwidths

for increasing bandwidths, the number of instances solved in 60 seconds using
the three proposed methods. For the hybrid method, we let the MDD method
run for 10 seconds, and then pass the bound zLB given by the MDD method
to the IP and let the IP solver run for an additional 50 seconds. In addition, in
Figure 4(b) we show, for increasing bandwidths, the best lower bound provided
by the three methods after one minute.

For the lower bandwidths, we see that both the MDD-based approach and the
hybrid approach outperform IP, with the hybrid method edging out the pure MDD
method. As the bandwidth grows, however, the underlying structure that the MDD
is able to exploit dissolves, but still the hybrid approach performs best.

6.5 Scaling Up

Here we present results on instances with 500 variables, and again with k = 20,
to evaluate how the algorithms scale up. We have generated instances for various
bandwidths bw between 21 and 50 (5 random instances per configuration), and

Manipulating MDD Relaxations for Combinatorial Optimization 33

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000

nu
m

be
r

of
 in

st
an

ce
s

so
lv

ed

time

IP
MDD

HYBRID

 0

 1

 2

 3

 4

 5

 10 100 1000

nu
m

be
r

of
 in

st
an

ce
s

so
lv

ed

time

IP
MDD

HYBRID

(a) Bandwidth 22 (b) Bandwidth 23

 0

 1

 2

 3

 4

 5

 10 100 1000

nu
m

be
r

of
 in

st
an

ce
s

so
lv

ed

time

IP
MDD

HYBRID

 0

 0.5

 1

 1.5

 2

 10 100 1000

nu
m

be
r

of
 in

st
an

ce
s

so
lv

ed

time

IP
MDD

HYBRID

(c) Bandwidth 24 (d) Bandwidth 25

Fig. 5. Performance profile for pure-IP, pure-MDD, and hybrid MDD/IP for instances
width various bandwidth. Time is reported in log-scale.

we report the most interesting results corresponding to the ‘phase transition’,
i.e., bw ∈ {22, 23, 24, 25}. We compare the three solution methods, allowing the
algorithms to run for 12 minutes.

In the four plots given in Figure 5, we depict the performance profile of the
three methods for the different bandwidths. We show for each bandwidth the
number of instances solved by time t. As the bandwidth increases, we see that
the IP is unable to solve many of the instances that the MDD-based method
can, and for bw = 25, neither the pure-IP nor the pure-MDD based methods
can solve the instances, while the hybrid method was able to solve 2 of the 5
instances.

Figure 6(a) displays the lower bound given by the three approaches versus
time, averaged over the 5 instances. We run the algorithms for 5 minutes and
see that the lower bound given by the MDD-based approach dominates the IP
bound, especially at small bandwidths. However, as the bandwidth grows, as
shown in Figure 6(b), the structure captured by the relaxation MDDs no longer
exists and the pure-IP method is able to find better bounds. However, even at
the larger bandwidths, the hybrid method provides the best bounds.

34 D. Bergman, W.-J. van Hoeve, and J.N. Hooker

 24

 25

 26

 27

 28

 29

 30

 21 21.5 22 22.5 23 23.5 24 24.5 25

lo
w

er
 b

ou
nd

 a
ft

er
 1

2
m

in
ut

es

bandwidth

IP
MDD

HYBRID

 18

 20

 22

 24

 26

 28

 30

 25 30 35 40 45 50

lo
w

er
 b

ou
nd

 a
ft

er
 5

 m
in

ut
es

bandwidth

IP
MDD

HYBRID

(a) (b)

Fig. 6. (a) Bandwidth versus lower bound (12 minute time limit), (b) Larger band-
widths versus lower bound (5 minute time limit)

7 Conclusion

In conclusion, we have examined how relaxation MDDs can help in providing
lower bounds for combinatorial optimization problems. We discuss methods for
providing lower bounds via relaxation MDDs and provide computational results
on applying these ideas to randomly generated set covering problems. We show
that in general we can quickly improve upon LP bounds, and even outperform
state-of-the-art integer programming technology on problem instances for which
the bandwidth of the constraint matrix is limited. Finally, we have shown how a
hybrid combination of IP and MDD-based relaxation can be even more effective.

References

1. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27,
509–516 (1978)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store
Based on Multivalued Decision Diagrams. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 118–132. Springer, Heidelberg (2007)

3. Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut
framework. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 452–463.
Springer, Heidelberg (2005)

4. Behle, M.: On Threshold BDDs and the Optimal Variable Ordering Problem. In:
Dress, A.W.M., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 124–135.
Springer, Heidelberg (2007)

5. Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Pro-
ceedings of ALENEX. SIAM, Philadelphia (2007)

6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

7. Campos, V., Piñana, E., Mart́ı, R.: Adaptive memory programming for matrix
bandwidth minimization. Annals of Operations Research (to appear)

8. Del Corso, G.M., Manzini, G.: Finding exact solutions to the bandwidth minimiza-
tion problem. Computing 62(3), 189–203 (1999)

Manipulating MDD Relaxations for Combinatorial Optimization 35

9. Feige, U.: Approximating the bandwidth via volume respecting embeddings. J.
Comput. Syst. Sci. 60(3), 510–539 (2000)

10. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J.
Math. 15, 835–855 (1965)

11. Gurari, E.M., Sudborough, I.H.: Improved dynamic programming algorithms for
bandwidth minimization and the mincut linear arrangement problem. ALGO-
RITHMS: Journal of Algorithms 5 (1984)

12. Hadzic, T., Hooker, J.N.: Postoptimality analysis for integer programming using
binary decision diagrams, presented at GICOLAG workshop (Global Optimization:
Integrating Convexity, Optimization, Logic Programming, and Computational Al-
gebraic Geometry), Vienna. Technical report, Carnegie Mellon University (2006)

13. Hadzic, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 program-
ming. Technical report, Carnegie Mellon University (2007)

14. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate Compilation
of Constraints into Multivalued Decision Diagrams. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

15. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A Systematic Approach to MDD-Based
Constraint Programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010)

16. Hooker, J.N.: Integrated Methods for Optimization. Springer, Heidelberg (2007)
17. Hu, A.J.: Techniques for Efficient Formal Verification Using Binary Decision Dia-

grams. Technical Report CS-TR-95-1561, Stanford University, Department of Com-
puter Science (1995)

18. Kam, T., Villa, T., Brayton, R.K., Sangiovanni-Vincentelli, A.L.: Multi-valued
decision diagrams: Theory and applications. International Journal on Multiple-
Valued Logic 4, 9–62 (1998)

19. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38, 985–999 (1959)

20. Mart́ı, R., Campos, V., Piñana, E.: A branch and bound algorithm for the ma-
trix bandwidth minimization. European Journal of Operational Research 186(2),
513–528 (2008)

21. Mart́ı, R., Laguna, M., Glover, F., Campos, V.: Reducing the bandwidth of a sparse
matrix with tabu search. European Journal of Operational Research 135(2), 450–
459 (2001)

22. Piñana, E., Plana, I., Campos, V., Mart́ı, R.: GRASP and path relinking
for the matrix bandwidth minimization. European Journal of Operational Re-
search 153(1), 200–210 (2004)

23. Saxe, J.: Dynamic programming algorithms for recognizing small-bandwidth
graphs in polynomial time. SIAM J. Algebraic Discrete Meth. 1, 363–369 (1980)

The AllDifferent Constraint with Precedences�

Christian Bessiere1, Nina Narodytska2, Claude-Guy Quimper3, and Toby Walsh2

1 CNRS/LIRMM, Montpellier
bessiere@lirmm.fr

2 NICTA and University of NSW, Sydney
{nina.narodytska,toby.walsh}@nicta.com.au

3 Université Laval, Québec
claude-guy.quimper@ift.ulaval.ca

Abstract. We propose ALLDIFFPREC, a new global constraint that combines
together an ALLDIFFERENT constraint with precedence constraints that strictly
order given pairs of variables. We identify a number of applications for this global
constraint including instruction scheduling and symmetry breaking. We give an
efficient propagation algorithm that enforces bounds consistency on this global
constraint. We show how to implement this propagator using a decomposition
that extends the bounds consistency enforcing decomposition proposed for the
ALLDIFFERENT constraint. Finally, we prove that enforcing domain consistency
on this global constraint is NP-hard in general.

1 Introduction

One of the important features of constraint programming are global constraints. These
capture common modelling patterns (e.g. “these jobs need to be processed on the same
machine so must take place at different times”). In addition, efficient propagation algo-
rithms are associated with global constraints for pruning the search space (e.g. “these 5
jobs have only 4 time slots between them so, by a pigeonhole argument, the problem is
infeasible”). One of the oldest and most useful global constraints is the ALLDIFFERENT

constraint [1]. This specifies that a set of variables takes all different values. Several al-
gorithms have been proposed for propagating this constraint (e.g. [2,3,4,5,6]). Such
propagators can have a significant impact on our ability to solve problems (see, for in-
stance, [7]). It is not hard to provide pathological problems on which some of these
propagation algorithms provide exponential savings. A number of hybrid frameworks
have been proposed to combine the benefits of such propagation algorithms and OR
methods like integer linear programming (see, for instance, [8]). In addition, the convex
hull of a number of global constraints has been studied in detail (see, for instance, [9]).

In this paper, we consider a modelling pattern [10] that occurs in many problems
involving ALLDIFFERENT constraints. In addition to the constraint that no pair of vari-
ables can take the same value, we may also have a constraint that certain pairs of vari-
ables are ordered (e.g. “these two jobs need to be processed on the same machine so

� Supported by the Australian Government’s Department of Broadband, Communications and
the Digital Economy and the ARC.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 36–52, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The AllDifferent Constraint with Precedences 37

must take place at different times, but the first job must be processed before the sec-
ond”). We propose a new global constraint, ALLDIFFPREC that captures this pattern.
This global constraint is a specialization of the general framework that combines several
CUMULATIVE and precedence constraints [11,12]. Reasoning about such combinations
of global constraints may achieve additional pruning. In this work we propose an effi-
cient propagation algorithm for the ALLDIFFPREC constraint. However, we also prove
that propagating the constraint completely is computationally intractable.

2 Formal Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a do-
main of possible values, and a set of constraints specifying allowed values for subsets
of variables. A solution is an assignment of values to the variables satisfying the con-
straints. We write D(X) for the domain of the variable X . Domains can be ordered
(e.g. integers). In this case, we write min(X) and max(X) for the minimum and max-
imum elements in D(X). The scope of a constraint is the set of variables to which it is
applied. A global constraint is one in which the number of variables is not fixed. For
instance, the global constraint ALLDIFFERENT([X1, . . . , Xn]) ensures Xi
= Xj for
1 ≤ i < j ≤ n. By comparison, the binary constraint, Xi
= Xj is not global.

When solving a CSP, we often use propagation algorithms to prune the search space
by enforcing properties like domain, bounds or range consistency. A support on a con-
straint C is an assignment of all variables in the scope of C to values in their domain
such that C is satisfied. A variable-value Xi = v is consistent on C iff it belongs to
a support of C. A constraint C is domain consistent (DC) iff every value in the do-
main of every variable in the scope of C is consistent on C. A bound support on C is
an assignment of all variables in the scope of C to values between their minimum and
maximum values (respectively called lower and upper bound) such that C is satisfied. A
variable-value Xi = v is bounds consistent on C iff it belongs to a bound support of C.
A constraint C is bounds consistent (BC) iff the lower and upper bounds of every vari-
able in the scope of C are bounds consistent on C. Range consistency is stronger than
BC but is weaker than DC. A constraint C is range consistent (RC) iff iff every value
in the domain of every variable in the scope of C is bounds consistent on C. A CSP
is DC/RC/BC iff each constraint is DC/RC/BC. Generic algorithms exists for en-
forcing such local consistency properties. For global constraints like ALLDIFFERENT,
specialized methods have also been developed which offer computational efficiencies.
For example, a bounds consistency propagator for ALLDIFFERENT is based on the no-
tion of Hall interval. A Hall interval is an interval of h domain values that completely
contains the domains of h variables. Clearly, variables whose domains are contained
within the Hall interval consume all the values in the Hall interval, whilst any other
variables must find their support outside the Hall interval.

We will compare local consistency properties applied to logically equivalent con-
straints. As in [13], we say that a local consistency property Φ on the set of con-
straints S is stronger than Ψ on the logically equivalent set T iff, given any domains,
Φ removes all values Ψ removes, and sometimes more. For example, domain con-
sistency on ALLDIFFERENT([X1, . . . , Xn]) is stronger than domain consistency on

38 C. Bessiere et al.

{Xi
= Xj | 1 ≤ i < j ≤ n}. In other words, decomposition of the global
ALLDIFFERENT constraint into binary not-equals constraints hinders propagation.

3 Some Examples

To motivate the introduction of this global constraint, we give some examples of models
where we have one or more sets of variables which take all-different values, as well as
certain pairs of these variables which are ordered.

3.1 Exam Time-Tabling

Suppose we are time-tabling exams. A straight forward model has variables for exams,
and values which are the possible times for these exams. In such a model, we may have
temporal precedences (e.g. part 1 of the physics exam must be before part 2) as well
as ALLDIFFERENT constraints on those sets of exams with students in common (e.g.
all physics, maths, and chemistry exams must occur at different times since there are
students that need to sit all three exams).

3.2 Scheduling

Suppose we are scheduling a single machine with unit-time tasks, subject to precedence
constraints and release and due times [14]. A straight forward model has variables for
the tasks, and values which are the possible times that we execute each task. In such a
model, we have an ALLDIFFPREC constraint on variables whose domains are the appro-
priate intervals. For example, consider scheduling instructions in a block (a straight-line
sequence of code with a single entry and exit point) on one processor where all instruc-
tions take the same time to execute. Such a schedule is subject to a number of different
types of precedence constraints. For instance, instruction A must execute before B if:

Read-after-write dependency: B reads a register written by A;
Write-after-write dependency: B writes a register also written by A;
Write-after-read dependency: B writes a register that A reads.

Such dependencies give rise to precedence constraints between the instructions.

3.3 Breaking Value Symmetry

Many constraint models contain value symmetry. Puget has proposed a general method
for breaking any number of value symmetries in polynomial time [15,16]. This method
introduces variables Zj to represent the index of the first occurrence of each value:

Xi = j ⇒ Zj ≤ i, Zj = i ⇒ Xi = j

Value symmetry on the Xi is transformed into variable symmetry on the Zj . This vari-
able symmetry is easy to break. We simply need to post precedence constraints on the
Zj . Depending on the value symmetry, we need different precedence constraints.

The AllDifferent Constraint with Precedences 39

Consider, for example, finding a graceful labelling of a graph. A graceful labelling
is a labelling of the vertices of a graph with distinct integers 0 to e such that the e edges
(which are labelled with the absolute differences of the labels of the two connected
vertices) are also distinct. Graceful labellings have applications in radio astronomy,
communication networks, X-ray crystallography, coding theory and elsewhere. Here is
the graceful labelling of the graph K3 × P2:

9

4

7

0

8

1

4

9

6

2
5

3

8
1

7

A straight forward model for graceful labelling a graph has variables for the vertex
labels, and values which are integers 0 to e. This model has a simple value symmetry
as we can map every value i onto e − i. In [16], Puget breaks this value symmetry for
K3 × P2 with the following ordering constraints:

Z0 < Z1, Z0 < Z3, Z0 < Z4, Z0 < Z5, Z1 < Z2

Note that all the Zj take different values as each integer first occurs in the graph at
a different index. Hence, we have a sequence of variables on which there is both an
ALLDIFFERENT and precedence constraints.

4 ALLDIFFPREC

Motivated by such examples, we propose the global constraint:

ALLDIFFPREC([X1, . . . , Xn], E)

Where E is a set containing pairs of variable indices. This ensures Xi
= Xj for any
1 ≤ i < j ≤ n and Xj < Xk for any (j, k) ∈ E. Without loss of generality, we assume
that E does not contain cycles. If it does, the constraint is trivially unsatisfiable. It is not
hard to see that decomposition of this global constraint into separate ALLDIFFERENT

and binary ordering constraints can hinder propagation.

Lemma 1. Domain consistency on the constraint ALLDIFFPREC([X1, . . . , Xn], E) is
stronger than domain consistency on the decomposition into ALLDIFFERENT([X1,
. . . , Xn]) and the binary ordering constraints, Xi < Xj for (i, j) ∈ E. Bounds con-
sistency on ALLDIFFPREC([X1, . . . , Xn], E) is stronger than bounds consistency on
the decomposition, whilst range consistency on ALLDIFFPREC([X1, . . . , Xn], E) is
stronger than range consistency on the decomposition.

Proof: Consider ALLDIFFPREC([X1, X2, X3], {(1, 3), (2, 3)}) with D(X1) =
D(X2) = {1, 2, 3} and D(X3) = {2, 3, 4}. Then the decomposition into
ALLDIFFERENT([X1, X2, X3]) and the binary ordering constraints, X1 < X3, and
X2 < X3 is domain consistent. Hence, it is also range and bounds consistent. How-
ever, enforcing bounds consistency directly on the global ALLDIFFPREC constraint

40 C. Bessiere et al.

will prune 2 from the domain of X3 since this assignment has no bound support. Simi-
larly, enforcing range or domain consistency will prune 2 from the domain of X3. ��
A simple greedy method will find a bound support for the ALLDIFFPREC constraint.
This method is an adaptation of the greedy method to build a bound support of the
ALLDIFFERENT constraint. For simplicity, we suppose that E contains the transi-
tive closure of the precedence constraints. In fact, this step is not required but makes
our argument easier. First, we need to preprocess variables domains so that they re-
spect the precedence constraints Xi < Xj , (i, j) ∈ E: min(Xi) < min(Xj) and
max(Xi) < max(Xj). However, we notice that it is sufficient to enforce a weaker
condition on bounds of variables Xi and Xj such that min(Xi) ≤ min(Xj) and
max(Xi) ≤ max(Xj). If these conditions on variables domains are satisfied then we
say that domains are preprocessed. Second, we construct a satisfying assignment as
follows. We process all values in the increasing order. When processing a value v, we
assign v to the variable with the smallest upper bound, u that has not yet been assigned
and that contains v in its domain. Suppose, there exists a set of variables that have the
upper bound u, so that X ′ = {Xi | D(Xi) = [v, u]}. To construct a solution for
ALLDIFFERENT, we would break these ties arbitrarily. In this case, however, we select
a variable that is not successor of any variable in the set X ′. Such a variable always
exists, as the transitive closure of the precedence graph does not contain cycles. By the
correctness of the original algorithm the resulting assignment is a solution. In addition
to satisfying the ALLDIFFERENT constraint, this solution also satisfies the precedence
constraints. Indeed, for the constraint Xi < Xj , the upper bound of D(Xi) is necessar-
ily smaller than or equal to the upper bound of D(Xj). In the case of equality, we tie
break in favor of Xi. Therefore, a value is assigned to Xi before a value gets assigned
to Xj . Since we process values in increasing order, we obtain Xi < Xj as required.

Example 1. Consider ALLDIFFPREC([X1, X2, X3, X4], {(1, 3), (2, 3), (1, 4), (2, 4)})
with D(X1) = D(X2) = {1, 2, 3, 4, 5}, D(X3) = {1, 2, 3} and D(X4) = {2, 3, 4}.
First, we preprocess domains to ensure that min(Xi) ≤ min(Xj) and max(Xi) ≤
max(Xj), i ∈ {1, 2}, j ∈ {3, 4}. This gives D(X1) = D(X2) = D(X3) = {1, 2, 3},
D(X4) = {2, 3, 4}. As in the greedy algorithm, we consider the first value
1. This value is contained in domains of variables X1, X2 and X3. As
max(X1) = max(X2) = max(X3) = 3, by tie breaking we select variables
that are not successors of any other variables among variables {X1, X2, X3}. There
are two such variables: X1 and X2. We break this tie arbitrarily and set X1 to 1. The
new domains are D(X1) = 1, D(X2) = D(X3) = {2, 3}, D(X4) = {2, 3, 4}. The
next value we consider is 2. Again, there exist two variables that contain this value, and
they have the same upper bounds. By tie-breaking, we select X2. Finally, we assign X3

and X4 to 3 and 4 respectively.

We can design a filtering algorithm based on this satisfiability test. By successively
reducing a variable domain in halves with a binary search we can filter the lower and
upper bounds of a variable domain with O(logd) tests where d is the cardinality of the
domain. Consider, for example, a variable X with the domain D(X) = [l, u]. We are
looking for a support for min(X). At the first step we temporally fix the domain of X to
the first half so that D(X) = [l, (u − l)/2] and run the bounds disentailment detection

The AllDifferent Constraint with Precedences 41

algorithm. If this algorithm fails, we halved the search and repeat with the other half.
If this algorithm does not fail, we know that there is a value in [l, (u − l)/2] that has a
bounds support. Hence, we continue with the binary search within this half. As each test
takes O(n) time and there are n variables to prune, the total running time is O(n2logd).
In the rest of this paper, we improve on this using sophisticated algorithmic ideas.

5 Bounds Consistency

We present an algorithm that enforces bounds consistency on the ALLDIFFPREC con-
straint. First, we consider an assignment Xi = v and a partial filtering that this assign-
ment causes. We call this filtering direct pruning caused by the assignment Xi = v
or, in short, direct pruning of Xi = v. Informally, direct pruning works as follows.
If Xi takes v then the value v becomes unavailable for the other variables due to the
ALLDIFFERENT constraint. Hence, we remove v from the domains of variables that
have v as their lower bound or upper bound. Due to precedence constraints, we in-
crease the lower bounds of successors of Xi to v + 1 and decrease the upper bounds
of predecessors of Xi to v − 1. Note that direct pruning does not enforce bounds con-
sistency on either ALLDIFFPREC or the single ALLDIFFERENT constraint. However,
direct pruning is sufficient to detect bounds inconsistency as we show below.

Let P (i) and S(i) be the sets of variables that precede and succeed Xi, re-
spectively. We denote the domains obtained after direct pruning of Xi = v as
Ddp

v (X1), . . . ,Ddp
v (Xn), so that for all j = 1, . . . , n:

Ddp
v (Xj) = D(Xj) \ {v} if j
= i, v ∈ {min(Xj), max(Xj)} (1)

Ddp
v (Xj) = v if j = i, (2)

Ddp
v (Xj) = D(Xj) \ [v, max(Xj)] if j ∈ P (i), (3)

Ddp
v (Xj) = D(Xj) \ [min(Xj), v] if j ∈ S(i). (4)

These bounds could be pruned further but we will first analyze the properties that
this simple filtering offers.

Example 2. Consider ALLDIFFPREC([X1, X2, X3], {(1, 2)}) constraint with
D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {1, 2, 3}. For example, an assign-
ment X1 = 2 results in the domains: Ddp

2 (X1) = {2}, Ddp
2 (X2) = {3} and

Ddp
2 (X3) = {1, 2, 3}. We point out again that we can continue pruning as values 2 and

3 have to be removed from Ddp
2 (X3). However, direct pruning of X1 = 2 is sufficient

for our purpose. Consider another example. An assignment X3 = 1 results in the
domains: Ddp

3 (X1) = {2}, Ddp
3 (X2) = {2, 3} and Ddp

3 (X3) = {1}.

Our algorithm is based on the following lemma.

Lemma 2. Let ALLDIFFERENT and precedence constraints be bounds consistent over
variables X , Xi = v, v ∈ {min(Xi), max(Xi)} be an assignment of a variable Xi to
its bound and Ddp

v (X1), . . . ,Ddp
v (Xn) be the domains after direct pruning of Xi = v.

Then, Xi = v is bounds consistent iff ALLDIFFERENT([X1, . . . , Xn]), where domains
of variables X are Ddp

v (X1), . . . ,Ddp
v (Xn), has a solution.

42 C. Bessiere et al.

Proof: Suppose ALLDIFFERENT and the precedence constraints are bounds consis-
tent. As precedence constraints are bounds consistent, we know that for all (i, j) ∈ E,
Xi < Xj , min(Xi) < min(Xj) and max(Xi) < max(Xj). Consider direct pruning
of Xi = v. Note, direct pruning of Xi = v preserves the property of domains being
preprocessed. The pruning can only create equality of lower bounds or upper bounds
for some precedence constraints. The assignment X3 = 1 demonstrates this situation
in Example 2. Direct pruning of X3 = 1 forces lower bounds of X1 and X2, that are in
the precedence relation, to be equal.

As domains Ddp
v (X1), . . . ,Ddp

v (Xn) are preprocessed, we know that the greedy
algorithm (Section 4) will find a solution of ALLDIFFERENT on the domains
Ddp

v (X1), . . . ,Ddp
v (Xn) that also satisfies the precedence constraints if a solution ex-

ists. This solution is a support for Xi = v. ��
Based on Lemma 2 we prove that we can enforce bounds consistency on the
ALLDIFFPREC constraint in O(n2). However, we start with a simpler and less effi-
cient algorithm to explain the idea . We show how to improve this algorithm in the next
section. Given Lemma 2, the most straightforward algorithm to enforce bounds con-
sistency for Xi = v is to assign Xi to v, perform the direct pruning, run the greedy
algorithm and, if it fails, prune v. Interestingly enough, to detect bounds disentailment
we do not have to run a greedy algorithm for each pair Xi = v. If the ALLDIFFERENT

constraint and the precedence constraints are bounds consistent, we show that it is suf-
ficient to check that a set of conditions (5)-(10) holds for each interval of values. If
these conditions are satisfied then the pair Xi = v is bounds consistent. Hence, for each
pair Xi = v, 1 ≤ i ≤ n, v ∈ D(Xi), and for each interval we enforce the following
conditions. We assume that ∪n

i=1D(Xi) = [1, d]. For Xi, 1 ≤ i ≤ n, v ∈ D(Xi)
and for all intervals [v, v + k] and [v − p, v], k ∈ [max(Xi) − v + 1, d − v] and
p ∈ [v − min(Xi) + 1, v − 1], the following conditions have to be satisfied:

Bi
1,v+k = |{j ∈ S(i)|D(Xj) ⊆ [1, v + k]}| (5)

Di
v,(v+k) = |{j /∈ S(i)|D(Xj) ⊆ [v, v + k]}| (6)

Bi
1,v+k + Di

v,(v+k) ≤ k (7)

Bi
v−p,d = |{j ∈ P (i)|D(Xj) ⊆ [v − p, d]}| (8)

Di
v−p,v = |{j /∈ P (i)|D(Xj) ⊆ [v − p, v]}| (9)

Bi
v−p,d + Di

v−p,v ≤ p (10)

Note that we actually do not have to consider all possible intervals. For every
variable-value pair Xi = v we consider all intervals [v, u], u ∈ [max(Xi) + 1, d] and
all intervals [l, v], l ∈ [1, min(Xi) − 1]. The parameter k (p) is used to slide between
intervals [v, u], u ∈ [max(Xi) + 1, d] ([l, v], l ∈ [1, min(Xi) − 1]). Equations (5)–(7)
make sure that the number of variables that fall into an interval [v, u], after the assign-
ment Xi to v, is less than or equal to the length of the interval minus 1. Symmetrically,
Equations (8)–(10) ensure that the same condition is satisfied for all intervals [l, v]. If
there exists an interval [v, u]([l, v]) that violates the condition for a pair Xi = v then
this interval is removed from D(Xi).

The AllDifferent Constraint with Precedences 43

Example 3. Consider ALLDIFFPREC([X1, X2, X3, X4, X5], {(1, 2), (1, 3)}). Do-
mains of the variables are D(X1) = [1, 5], D(X2) = D(X3) = [2, 6] and
D(X4) = D(X5) = [3, 6]. Consider a variable-value pair X1 = 3. By the direct prun-
ing we get the following domains: Ddp

3 (X1) = 3, Ddp
3 (X2) = [4, 6], Ddp

3 (X3) = [4, 6],
Ddp

3 (X4) = [4, 6] and Ddp
3 (X5) = [4, 6]. The interval [4, 6] is a violated Hall interval

as it contains four variables. We show that Equations (5)–(6) detect that the interval
[3, 6] has to be pruned from D(X1).

Consider the pair X1 = 3 and the interval [v, v+k], where v = 3, k = 3. We get that
B1

1,6 = |{j ∈ {2, 3}|D(Xj) ⊆ [1, 6]}| = 2 D1
3,6 = |{j ∈ {4, 5})|D(Xj) ⊆ [3, 6]}| =

2 and B1
1,6 + D1

3,6 = 4 which is greater than k = 3. Hence, the interval [3, 6] has to be
removed from D(X1).

Theorem 1. Consider the ALLDIFFERENT[X1, . . . , Xn] constraint and a set of prece-
dence constraints Xi < Xj . Enforcing conditions (5)–(10) together with bounds con-
sistency on the ALLDIFFERENT constraint and the precedence constraints is equivalent
to enforcing bounds consistency on the ALLDIFFPREC constraint.

Proof: Suppose conditions (5)–(10) are fulfilled, ALLDIFFERENT and precedence
constraints are bounds consistent and the ALLDIFFPREC constraint is not bounds
consistent. Let an assignment of a variable Xi to its bound max(Xi) be an un-
supported bound. We denote max(Xi) v to simplify notations. We recall that we
denoted the domains after direct pruning of Xi = v Ddp

v (X1), . . . ,Ddp
v (Xn). By

Lemma 2 the ALLDIFFERENT([X1, . . . , Xn]) constraint where domains of variables
X are Ddp

v (X1), . . . ,Ddp
v (Xn) fails. Hence, there exists a violated Hall interval [l, u]

such that |Ddp
v (Xi) ⊆ [l, u]}| > u − l + 1.

Note that direct pruning of Xi = v does not cause the pruning of variables in P (i),
as all precedence constraints are bounds consistent on the original domains. Next we
consider several cases depending on the relative position of the value v and the violated
Hall interval on the line. Note that the interval [l, u] was not a violated Hall interval
before the assignment Xi = v. However, due to direct pruning of Xi = v a number of
additional variables domains can be forced to be inside [l, u]. Hence, we analyze these
additional variables and show that conditions (5)–(10) prevent the creation of a violated
Hall interval.

Case 1. Suppose v ∈ [l, u]. As [l, u] is a violated Hall interval, we have that

|{j ∈ S(i)|Ddp
v (Xj) ⊆ [l, u]]}|+ |{j /∈ S(i)|Ddp

v (Xj) ⊆ [l, u]}| > u − l,

Note that the number of additional variables that fall into the interval [l, u] after setting
Xi to v consists only of variables that succeed Xi, such that D(Xj) ⊆ [1, u]. Hence,
|{j /∈ S(i)|Ddp

v (Xj) ⊆ [l, u]}| = |{j /∈ S(i)|D(Xj) ⊆ [l, u]}|, |{j /∈ S(i)|Ddp
v (Xj) ⊆

[l, u]}| = |{j ∈ S(i)|D(Xj) ⊆ [1, u]}| and

|{j ∈ S(i)|D(Xj) ⊆ [1, u]}|+ |{j /∈ S(i)|D(Xj) ⊆ [l, u]}| > u − l,

which violate conditions (5)–(7) for v = l and k = u − l.

44 C. Bessiere et al.

Case 2. Suppose v /∈ [l, u]. If v > u + 1 or v < l − 1, the assignment Xi = v does
not force any extra variables to fall into the interval [l, u]. Hence, the interval [l, u] is
a violated Hall interval before the assignment. This contradicts that ALLDIFFERENT is
bounds consistent.

Case 3. Suppose v = u + 1. In this case the assignment Xi = v does not force any
additional variables among successors to fall into [l, u], as Ddp

v (Xj) ⊆ [u + 2, d]. Note
that there are no successors that are contained in the interval [1, v], because precedence
constraints are bounds consistent. Therefore, |{j ∈ S(i)|D(Xj) ⊆ [l, v]}| = 0. Hence,
the only additional variables that fall into [l, u] are variables that do not have a prece-
dence relation with Xi and v = max(Xj) = u + 1, so |{j|j /∈ S(i),Ddp

v (Xj) ⊆
[l, u]}| = |{j|j /∈ S(i),D(Xj) ⊆ [l, u + 1]}|. As [l, u] is a violated Hall interval, we
have

|{j|j /∈ S(i),D(Xj) ⊆ [l, u + 1]}| = |{j|j /∈ S(i),Ddp
v (Xj) ⊆ [l, u]}| > u − l + 1.

This contradicts Equation (10) |{j ∈ S(i)|D(Xj) ⊆ [l, u + 1]}| + |{j|j /∈
S(i),D(Xj) ⊆ [l, u + 1]}| ≤ (u + 1) − l as the first term equals 0 in the equation
by the argument above.

Case 4. Suppose v = l − 1. In this case the set of additional variables that fall into
the interval [l, u] consists of two subsets of variables. The first set contains variables
that succeed Xi, such that D(Xj) ⊆ [l′, u], l′ < v and Ddp

v (Xj) ⊆ [l, u]. The
second set contains the variables that do not have precedence relation with Xi and
v = max(Xj) = l − 1. Consider the interval [l − 1, u]. As conditions (5)–(7) are
satisfied for the interval [l − 1, u], we get that

|{j ∈ S(i)|D(Xj) ⊆ [1, u]}|+ |{j /∈ S(i)|D(Xj) ⊆ [l − 1, u]}| ≤ u − (l − 1),

On the other hand, as the [l, u] is violated we have

|{j ∈ S(i)|Ddp
v (Xj) ⊆ [l, u]}|+ |{j /∈ S(i)|Ddp

v (Xj) ⊆ [l, u]}| > u − l + 1,

We know that |{j /∈ S(i)|D(Xj) ⊆ [l − 1, u]}| = |{j|j /∈ S(i),Ddp
v (Xj) ⊆ [l, u]}|

and |{j ∈ S(i)|D(Xj) ⊆ [1, u]}| = |{j ∈ S(i)|Ddp
v (Xj) ⊆ [l, u]}| by the construction

of the direct pruning. This leads to a contradiction between the last two inequalities.
Therefore, the interval [l, u] cannot be a violated Hall interval. Similarly, we can

prove the same result for the minimum value of Xj .
The reverse direction is trivial. ��

Theorem 1 proves that conditions (5)–(10) together with bounds consistency on the
ALLDIFFERENT constraint and the precedence constraints are necessary and sufficient
conditions to enforce bounds consistency on the ALLDIFFPREC constraint. The time
complexity of enforcing these conditions in O(nd2), as for each variable we check
O(d2) intervals. This time complexity can be reduced by making an observation, that
we do not need to check intervals of length greater than n as conditions are trivially
satisfied for such intervals. This reduces the complexity to O(n2d).

We make an observation that helps to further reduce the time complexity of enforc-
ing these conditions. We denote L the set of all minimum values in variables domains

The AllDifferent Constraint with Precedences 45

L = ∪n
i=1{min(D(Xi))} and U the set of all maximum values in variables domains

U = ∪n
i=1{max(D(Xi))}. Let [l, u] be an interval that violates the conditions. We

denote cl,u the amount of violation in this interval: cl,u = Bi
1,u + Di

l,u − (u − l).

Observation 1. Let Xi be a variable and [v, v + k], v ∈ D(Xi) be an interval that
violates conditions (5)–(7). Then there exists a violated interval [l, u] such that [l, u] ⊆
[v, v + k], l, u ∈ L ∪ U and cl,u > l − v.

Proof: Consider a violated interval [v, v +k]. In this case Bi
1,v+k +Di

v,v+k > k. There
exists an interval [l, u] ⊆ [v, v + k] such that l, u ∈ L ∪U . We take the largest interval
[l, u]. Note that such an interval always exists as the interval [max(Xi), max(Xi)] is
contained inside the interval [v, v + k]. The interval [l, u] also violates the conditions,
because it contains the same variables. So, we have Bi

1,u + Di
l,u > u − l. We note

that Di
l,u = Di

v,v+k as there are no lower bounds in the interval [v, l). Similarly, there
are no upper bounds in the interval (u, v + k]. Hence, Bi

1,u = Bi
1,v+k. Therefore,

Bi
1,u + Di

l,u > k. The value cl,u is greater than k − u + l ≥ v + k − v − u + l ≥
v + k − u + l − v ≥ l − v as u ≤ v + k. ��
Observation 1 shows that it is sufficient to check intervals [v, v+k], {v, v+k} ∈ L∪U .
We can infer all pruning from these intervals. Let [l, u], l, u ∈ L∪U be an interval that
violates conditions (5)–(7) for a variable Xi and cl,u be the violation cost. Then we
remove the interval [l− (cl,u − 1), u] from D(Xi), as any interval between [l − (cl,u −
1), u] and [l, u] is a violated interval. A dual observation holds for conditions (8)–(10).
This reduces the time complexity of checking (5)–(10) to O(n3).

Algorithm 1. PruneUpperBounds(X1 , . . . , Xn)

Sort variables such that max(D(Xi)) ≤ max(D(Xi+1));1

for i ∈ 1..n do2

Create a disjoint set data structure T with the integers 1..d;3

b ← max(D(X1)) + 1;4

Invariant: b is the smallest value such that there are exactly as many available values5

in the open-interval [b, max(D(Xj)) + 1) as there are successors of Xi that have
been processed.;
for Xj in non-decreasing order of upper bound do6

if j �∈ S(i) then7

S ← Find(min(D(Xj)), T);8

v ← min(S);9

Union(v, max(S) + 1, T);10

if j > 1 then11

for k ∈ 1.. max(D(Xj)) − max(D(Xj−1)) do12

b ← max(Find(b, T)) + 1;13

if Find(v, T) = Find(b, T) ∨ v > b ∨ j ∈ S(i) then14

b ← min(Find(b − 1, T));15

max(D(Xi)) ← min(max(D(Xi)), b − 1);16

46 C. Bessiere et al.

6 Faster Bounds Consistency Algorithm

Observation 1 allows us to construct a faster algorithm to enforce conditions (5)–(10).
First, we observe that the conditions can be checked for each variable independently.
Consider a variable Xi. We sort all variables Xj , j = 1, . . . , n in a non-decreasing
order of their upper bounds. When processing a variable Xj , j /∈ S(i), we assign Xj to
the smallest value that has not been taken. When processing a variable Xj , j ∈ S(i), we
store information about the number of successors that we have seen so far. We perform
pruning if we find an interval [l, u] such that the number of available values in this
interval equals the number of successors in the interval [1, u]. We use a disjoint set data
structure to perform counting operations in O(d) time.

Algorithm 1 shows a pseudocode of our algorithm. We denote T a disjoint set data
structure. The function Find(v1, T) returns the set that contains the value v1. The func-
tion Union(v1, v2, T) joins the values v1 and v2 into a single set. We use a disjoint set
union data structure [22] that allows to perform Find and Union in O(1) time.

Theorem 1. Algorithm 1 enforces conditions (5)–(7) in O(nd) time.

Proof: Enforcing conditions (5)–(7) on the ith variable corresponds to the ith loop
(line 1). Hence, we can consider each run independently.

We denote Ij a set of values that are taken by non-successors of Xi after the variable
Xj is processed. The algorithm maintains a pointer b that stores the minimum value
such that the number of available values in the interval [b, max(Xj) + 1) is equal to
Bi

1,max(Xj)
after the variable Xj is processed.

Invariant. We prove the invariant for the pointer b by induction. The invariant holds
at step j = 0. Note that the first variable can not be a successor of Xi. Indeed, b =
max(X1) + 1 and the interval [max(X1) + 1, max(X1) + 1) is empty. Let us assume
that the invariant holds after processing the variable Xj−1.

Suppose the next variable to process is Xj . After we assigned Xj to a value, we
move b forward to capture a possible increase of the upper bound from max(Xj−1) to
max(Xj) (line 1) and, then, backward if either Xj is a successor of Xi or Xj is a non-
successor and Xj takes a value v such that b ≤ v (line 1). Note, that when we move b,
we ignore values in Ij . To point this out we call steps of b available-value-steps. Thanks
to a disjoint set union data structure we can jump over values in Ij in O(1) per step [22].

Moving forward. We move the pointer b on max(Xj) − max(Xj−1) available-value-
steps forward. We denote b′ a new value of b. The line 1 ensures that the number of
available values in the interval [b′, max(Xj) + 1) equals to the number of available
values in the interval [b, max(Xj−1)+ 1). This operation preserves the invariant by the
induction hypothesis.

Moving backward. We consider two cases.
Case 1. Xj is a successor of Xi. In this case, we move b′ one available-value-step

backward to capture that Xj is a successor (line 1). This preserves the invariant.
Case 2. Xj is not a successor of Xi. Suppose v and b′ are in the same set, so that

Find(v, T) = Find(b, T). Then we move b′ to the minimum element in this set.
This step does not change the number of available values between the pointer b′ and

The AllDifferent Constraint with Precedences 47

1

2

3

4

5

6

Step 1: Step 3:

X1
v

b

X1

b

Step 4:

X1

b

X4

Step 5:

X1

X4

X5

Step 2:

X1

b

v v

v v, b

Fig. 1. Algorithm 1 enforces conditions (5)–(7) on the variable X1

max(Xj). However, it makes sure that b′ stores the minimum possible value. This pre-
serves the invariant.

Suppose v and b′ are in different sets. If v > b′ then we move b′ one available-
value-step backward, as v took one of the available values in [b′, max(Xj) + 1). This
preserves the invariant. If v < b′ then the invariant holds by the induction hypothesis.
Hence, the new value of b preserves the invariant.

Note that the length of the interval [b, max(Xj) + 1) equals the sum of Bi
1,max(Xj)

and Db,max(Xj) due to the invariant. This means that the interval [b, max(Xj) + 1)
violates conditions (5)–(7), as the sum Bi

1,max(Xj) + Db,max(Xj) has to be less than or
equal to the length of the interval [b, max(Xj) + 1) minus 1.

Soundness. Suppose we pruned an interval [b − 1, max(Xj)] from D(Xi) after the
processing of the variable Xj . This pruning is sound because the interval [b, max(Xj)+
1) violates conditions (5)–(7).

Completeness. Suppose there exists an interval [l, u] that violates conditions (5)–(7),
so that Bi

1,u + Di
l,u > u − l. However, the algorithm does not prune the upper bound

of Xi to l − 1. Suppose that l ∈ L, u ∈ U . As the pointer b preserves the invariant,
there are exactly Bi

1,u available values between [l, u + 1). Hence b points to l and
max(Xi) ≤ l − 1.

Suppose that l /∈ L, u ∈ U . We consider the step when the last pruning of the
variable Xi occurs. Suppose we processed the variable Xj at this step. The pointer b
stores max(Xi)+ 1. As b does not move backward in the following steps, we conclude
that neither successors nor non-successors with domains that are contained inside the
interval [b, d] occur. Hence, Bi

1,u + Di
l,u = Bi

1,u + Di
max(Xi)+1,u, max(Xj) ≤ u,

u ∈ U , l < max(Xi). Hence [l, u] is not a violated interval.

Complexity. At each iteration of the loop (line 1) the pointer b moves O(d) times for-
ward and O(n) times backward. Due to a disjoint set data structure the total cost of the
operations is O(d), the functions Union(v1, v2, T) and Find(v1, T) take O(1) [22].
The total time complexity is O(nd). ��

48 C. Bessiere et al.

We can construct a similar algorithm to Algorithm 1 to enforce conditions (8)–(10) and
prune lower bounds.

Example 4. Consider ALLDIFFPREC([X1, X2, X3, X4, X5], {(1, 2), (1, 3)}) for Ex-
ample 3. We show how our algorithm works on this example.

We represent values in the disjoint set data structure T with circles. We use rectangles
to denote sets of joint values. Initially, all values are in disjoint sets. If a variable Xi

takes a value v we put the label Xi in the vth circle. Figure 1 shows five steps of the
algorithm when processing the variable X1 (line 1, i = 1).

Consider the first step. We set v = 1 as min(X1) is 1. We join the values 1 and 2 into
a single set (line 1). The pointer b is set to max(X1)+1 = 6. Consider the second step.
We process the variable X2 which is a successor of X1. As max(X2) − max(X1) = 1
we move b one available-value-step forward, b = 7. However, as X2 is a successor,
we move b available-value-step backward. Hence, b = 6. Consider the third step. We
process X3 which is a successor of X1. As max(X3)−max(X2) = 0 we do not move b
forward. However, as X3 is a successor, we move b available-value-step backward, b is
set to 5. Consider the fourth step. We process X4 which is a non-successor of X1. The
value min(X4) is 3. Hence, v = 3 and join 3 and 4 into a single set. Consider the fifth
step. We process the variable X5 which is a non-successor of X1. The value min(X5)
is 4, as the value 3 is taken by X4. As values 3 and 4 are in the same set, we do not
move v and join {3, 4} and 5 into a set. Note that v and b are in the same set and we
move b to the minimum element in this set. Hence, b = 3 and we prune [3, 5] from X1.

The complexity of the algorithm can be reduced to O(n2). Let L be the set of domain
lower bounds sorted in increasing order and let li−1 and li be two consecutive values
in that ordering. Following [6], we initialize the disjoint set data structures with only
the elements in L. We assign a counter ci to each element li initialized to the value
li − li−1. Line 1 of the algorithm can be modified to decrement the counter of max(S).
The algorithm calls the function Union only if the counter of max(S) is decremented to
zero. The algorithm preserves its correctness and since there are at most n elements in
L, the factor d in the complexity of the algorithm is replaced by n resulting in a running
time complexity of O(n2).

7 Bounds Consistency Decomposition

We present a decomposition of the ALLDIFFPREC constraint. For 1 ≤ i ≤ n, 1 ≤
l ≤ u ≤ d and u − l < n, we introduce Boolean variables Bil and Ailu and post the
following constraints:

Bil = 1 ⇐⇒ Xi ≤ l (11)

Ailu = 1 ⇐⇒ (Bi(l−1) = 0 ∧ Biu = 1) (12)
n∑

i=1

Ailu ≤ u − l + 1 (13)

∑
j∈S(i)

Aj,1,u +
∑

j /∈S(i)

Aj,l,u − Bi(l−1) ≤ u − l (14)

The AllDifferent Constraint with Precedences 49

∑
j∈P (i)

Aj,l,d +
∑

j /∈P (i)

Aj,l,u − (1 − Biu) ≤ u − l (15)

∀j ∈ S(i), Xi < Xj (16)

∀j ∈ P (i), Xj < Xi (17)

Theorem 2. Enforcing bounds consistency on constraints (11) and (17) enforces
bounds consistency on the corresponding ALLDIFFPREC constraint in O(n2d2) down
a branch of the search tree.

Proof: Constraints (11)–(13) enforce bounds consistency on the ALLDIFFERENT con-
straint. Constraints (16)–(17) enforce bounds consistency on the precedence con-
straints. Finally, conditions (8)–(10) are captured by constraints (14) and (15). By
Theorem 1, enforcing BC on ALLDIFFERENT, precedence constraints and enforcing
conditions (8)–(10) is sufficient to enforce bounds consistency on the ALLDIFFPREC

constraint. The time complexity is dominated by O(nd2) linear inequality con-
straints (14)–(15). It takes O(n) time to propagate a linear inequality constraint over
O(n) Boolean variables down a branch of the search tree. Hence, the total complexity
is O(n2d2). ��
Note that the time complexity of decomposition contains a factor d that we cannot
reduce as in the case of the conditions (5)–(10). As we compute the time complexity
down a branch of a search tree we have to consider all possible O(d2) tight intervals
that might emerge during the search.

8 Domain Consistency

Whilst enforcing bounds consistency on the ALLDIFFPREC constraint takes just low or-
der polynomial time, enforcing domain consistency is intractable in general (assuming
P
= NP).

Theorem 2. Enforcing domain consistency on ALLDIFFPREC([X1, . . . , Xn], E) is
NP-hard.

Proof: We give a reduction from 3-SAT. Suppose we have a 3-SAT problem in N vari-
ables and M clauses. We consider an ALLDIFFPREC constraint on 2N +3M variables.
The first 2N variables represent a truth assignment. The next 3M variables represent
the literals which satisfy each of the clauses. For 1 ≤ i ≤ N , the variables X2i−1 and
X2i have domains {i, N + M + i}. X2i−1 = i corresponds to the case in which we
have a truth assignment that assigns xi to false whilst X2i = i corresponds to the case in
which we have a truth assignment that assigns xi to true. The all different constraint en-
sures that only one of X2i−1 and X2i can be assigned to i. Hence one of these two cases
must hold. For 1 ≤ i ≤ M , the variables XN+3i−2, XN+3i−1 and XN+3i represent the
three literals in each clause. The values assigned to these variables will ensure that the
truth assignment satisfies at least one literal in each clause. The domains of XN+3i−2,
XN+3i−1 and XN+3i are {N + i, 2N +M +2i, 2N +M +2i−1, }. N + i will be the
value used to indicate that the corresponding literal satisfies the clause. For each literal

50 C. Bessiere et al.

in a clause, we add an edge to E to ensure that there is an ordering constraint between
one of the first 2N variables in the truth assignment section and the corresponding vari-
able in the clause section. For example, suppose the ith clause is xj ∨¬xk ∨xl then we
add 3 edges to E to ensure: X2j < XN+3i−2, X2k−1 < XN+3i−1, and X2l < XN+3i.
The all different constraint ensures one of XN+3i−2, XN+3i−1 and XN+3i takes the
smallest value N + i, and the ordering constraint then checks that the corresponding
literal is set to true. By construction, the ALLDIFFPREC constraint has support iff there
is a satisfying assignment to the original 3-SAT problem. ��
Note that the proof uses a DAG defined by E that is flat, and does not contain any
chains. Hence, enforcing domain consistency on ALLDIFFPREC remains NP-hard with-
out chains of precedences. Note also that SAT remains NP-hard even if each clause has
at most 3 literals, and each literal or negated literal occurs at most three times. Hence, a
similar reduction shows that enforcing domain consistency on ALLDIFFPREC remains
NP-hard even if the degree of nodes in E is at most 3 (that is, we have at most 3 prece-
dence constraints on any variable).

9 Other Related Work

There have been many studies on propagation algorithms for a single ALLDIFFERENT

constraint. A domain consistency algorithm that runs in O(n2.5) was introduced in [2].
A range consistency algorithm was then proposed in [3] that runs in time O(n2). The
focus was moved from range consistency to bound consistency with [4], who proposed
a bounds consistency algorithm that runs in O(n log n). This was later improved further
in [17] and then in [6].

Decompositions that achieve bounds consistency have been given for a number of
global constraints. Relevant to this work, similar decompositions have been given for a
single ALLDIFFERENT constraint [18], as well as for overlapping ALLDIFFERENT con-
straints [19]. These decompositions have the property that enforcing bound consistency
on the decomposition achieves bounds consistency on the original global constraint.

A number of global constraints have been combined together and specialized propa-
gators developed to deal with these conjunctions. For example, a global lexicographical
ordering and sum constraint have been combined together [20]. As a second example,
a generic method has been proposed for propagating combinations of the global lexi-
cographical ordering and a family of globals including the REGULAR and SEQUENCE

constraints [21].

10 Conclusions

We have proposed a new global constraint that combines together an ALLDIFFERENT

constraint with precedence constraints that strictly order given pairs of variables. We
gave an efficient propagation algorithm that enforces bounds consistency on this global
constraint in O(n2) time, and showed how this propagator can be simulated with a sim-
ple decomposition extends the bounds consistency enforcing decomposition proposed
for the ALLDIFFERENT constraint. Finally, we proved that enforcing domain consis-
tency on this global constraint is NP-hard in general. There are many interesting future

The AllDifferent Constraint with Precedences 51

directions. We could, for example, study the convex hull of the ALLDIFFPREC con-
straint. Other interesting future work includes studying the combination of precedence
constraints with generalizations of the ALLDIFFERENT constraint including the global
cardinality constraint and the inter-distance constraint.

References

1. Lauriere, J.L.: ALICE: a language and a program for stating and solving combinatorial prob-
lems. Artificial Intelligence 10, 29–127 (1978)

2. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of
the 12th National Conference on AI, Association for Advancement of Artificial Intelligence,
pp. 362–367 (1994)

3. Leconte, M.: A bounds-based reduction scheme for constraints of difference. In: Proceedings
of Second International Workshop on Constraint-based Reasoning, Constraint 1996 (1996)

4. Puget, J.: A fast algorithm for the bound consistency of alldiff constraints. In: 15th National
Conference on Artificial Intelligence, Association for Advancement of Artificial Intelligence,
pp. 359–366 (1998)

5. Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the
alldifferent constraint. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, p. 306. Springer,
Heidelberg (2000)

6. Lopez-Ortiz, A., Quimper, C., Tromp, J., van Beek, P.: A fast and simple algorithm for
bounds consistency of the alldifferent constraint. In: Proceedings of the 18th International
Conference on AI, International Joint Conference on Artificial Intelligence (2003)

7. Stergiou, K., Walsh, T.: The difference all-difference makes. In: Proceedings of 16th IJCAI,
International Joint Conference on Artificial Intelligence (1999)

8. Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E.: The role of integer programming
techniques in constraint programming’s global constraints. INFORMS Journal on Comput-
ing 14, 387–402 (2002)

9. Williams, H., Yan, H.: Representations of the all different predicate of constraint satisfaction
in integer programming. INFORMS Journal on Computing 13, 96–103 (2001)

10. Walsh, T.: Constraint patterns. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 53–64.
Springer, Heidelberg (2003)

11. Beldiceanu, N., Bourreau, E., Rivreau, D., Simonis, H.: Solving Resource-constrained
Project Scheduling Problems with CHIP. In: 5th International Workshop on Project Man-
agement and Scheduling (PMS 1996), Poznan, pp. 35–38 (1996)

12. Simonis, H.: Building industrial applications with constraint programming. In: Comon, H.,
Marché, C., Treinen, R. (eds.) CCL 1999. LNCS, vol. 2002, p. 271. Springer, Heidelberg
(2001)

13. Debruyne, R., Bessière, C.: Some practicable filtering techniques for the constraint satisfac-
tion problem. In: Proceedings of the 15th IJCAI, International Joint Conference on Artificial
Intelligence, pp. 412–417 (1997)

14. Garey, M., Johnson, D., Simons, B., Tarjan, R.: Scheduling unit-time tasks with arbitrary
release times and deadlines. SIAM J. Comput. 10, 256–269 (1981)

15. Puget, J.-F.: Breaking all value symmetries in surjection problems. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 490–504. Springer, Heidelberg (2005)

16. Puget, J.F.: Symmetry in injective problems. Constraint Programming Letters 3, 1–20 (2007)
17. Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the

alldifferent constraint. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 306–319.
Springer, Heidelberg (2002)

52 C. Bessiere et al.

18. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Decompositions of
all different, global cardinality and related constraints. In: Proceedings of 21st IJCAI, Inter-
national Joint Conference on Artificial Intelligence, pp. 419–424 (2009)

19. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T.: Propagating con-
junctions of alldifferent constraints. In: Fox, M., Poole, D. (eds.) Proc. of the Twenty-Fourth
AAAI Conference on Artificial Intelligence (AAAI 2010). AAAI Press, Menlo Park (2010)

20. Hnich, B., Kiziltan, Z., Walsh, T.: Combining symmetry breaking with other constraints:
lexicographic ordering with sums. In: Proceedings of the 8th International Symposium on
the Artificial Intelligence and Mathematics (2004)

21. Katsirelos, G., Narodytska, N., Walsh, T.: Combining symmetry breaking and global con-
straints. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP 2008. LNCS, vol. 5655, pp. 84–98.
Springer, Heidelberg (2009)

22. Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set union.
In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing
(STOC 1983), pp. 246–251. ACM, New York (1983)

Retail Store Workforce Scheduling by Expected
Operating Income Maximization

Nicolas Chapados1, Marc Joliveau2, and Louis-Martin Rousseau2

1 Université de Montréal
Montréal, Canada

2 École Polytechnique de Montréal
Montréal, Canada

Abstract. We address the problem of retail store sales personnel scheduling by
casting it in terms of an expected operating income maximization. In this frame-
work, salespeople are no longer only responsible for operating costs, but also
contribute to operating revenue. We model the marginal impact of an additional
staff by making use of historical sales and payroll data, conditioned on a store-
, date- and time-dependent traffic forecast. The expected revenue and its uncer-
tainty are then fed into a constraint program which builds an operational schedule
maximizing the expected operating income. A case study with a medium-sized
retailer suggests that revenue increases of 7% and operating income increases of
3% are possible with the approach.

Keywords: Shift Scheduling, Statistical Forecasting, Retail, Constraint Program-
ming.

1 Introduction

The objective of work schedule optimization is to allocate the right number of em-
ployees at the right time and the right place, to respond to an expected demand, while
satisfying organizational constraints and—as much as possible—employee preferences
[6]. The ability to forecast future demand constitutes one of the most important in-
gredients in the quality of the eventual schedule: an ideal schedule is capable of per-
fectly matching changes in employee demand with commensurate changes in employee
supply. In the area of call center management, a coherent methodology has started to
crystallize, combining statistical models for call arrival, duration and drop rate forecast-
ing [2,3,12,11,13,1], together with a dimensioning aspect that determines the optimal
number of employees to schedule in each daily segment to satisfy quality of service
criteria [7].

The retail sector is another instance of prime economic significance where a com-
bination of statistical modeling and mathematical programming techniques could yield
substantial operational efficiencies. As with call centers, there is often considerable un-
certainty in the traffic arrival process. However, and in contrast to call centers, the sales
staff plays a role in the generation of operating revenues, and not only accrues to oper-
ating expenses. This means that we can view the introduction of an additional employee

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 53–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

54 N. Chapados, M. Joliveau, and L.-M. Rousseau

in terms of its marginal impact on operating income: the optimal number of employ-
ees at any point in time is that which balances revenue increase with additional payroll
costs. This is the number that the scheduling process would aim to reach.

For the retail industry, these considerations have received only very little attention
from the academic literature [5]. In particular, to the authors’ knowledge, sales staff
dimensioning based on formal business metrics has not been addressed. This paper
introduces a statistical modeling and mathematical programming methodology that in-
tends to bridge this gap. We start by introducing the overall approach, followed by an
account of the individual statistical models that constitute the forecasting aspect of the
methodology. Next, we provide results of a case study with a medium-sized clothing
and apparel retailer showing the potential of the approach. We close with a prelimi-
nary overview of the constraint programming aspect of the methodology that would
introduce the results of forecasting uncertainty into the creation of the final employee
schedule, with the goal of increasing schedule robustness.

2 Forecasting in Retail Workforce Management

It is traditional to analyze retail sales in terms of decompositions along more fundamen-
tal quantities. A simple one—amenable to robust statistical modeling—is to write the
expected sales during period t, St, in terms of the number items sold during the period
and their average price:

E[St | Et, T̃t,Xt] = E[VtPt | Et, T̃t,Xt], (1)

where Vt is the sales volume, i.e. the number of items sold during period t, and Pt is the
average price of an individual item. We condition the expectation on three quantities:
Et is the number of selling employees,1 which we posit has a causal effect on sales—
this is the key element linking the forecasting model with workforce optimization. The
quantity T̃t represents the store traffic during period t (the number of shoppers who can
become potential buyers); it can either be the actual traffic, or a traffic proxy, somehow
related to the traffic but that might be less precisely measured, such as the tick count
from unidirectional people counters. Finally, Xt is a vector of other explanatory vari-
ables, such calendar regressors or indicators for special events. For brevity, we denote
{Et, T̃t,Xt} by It. Expression (1) can be rewritten as

E[St | It] = E[VtE[Pt | Vt, It] | It]

=
∑
vt

P (Vt = vt | It) vt E[Pt | Vt, It], (2)

where the second equation is written assuming that the number of items sold is a discrete
quantity. This allows two separate models to be brought to bear: (i) a direct model of

1 Defined, in a retail store context, as employees assigned to sales and direct customer assistance
on the floor; it would exclude, for instance, cashiers that cannot have a direct impact in turning
shoppers into buyers, or employees tasked with replenishing shelves if they do not actively
seek to help out shoppers.

Retail Store Workforce Scheduling 55

the conditional expectation of the item price given the number of items sold and other
variables It,2 and (ii) a model of the conditional distribution of the number of items
sold given only the variables It. These models are detailed in section 3.

From this model, a sales curve can be established by varying the number of employ-
ees across a reasonable range to determine how the store sales are impacted. A further
step, assuming homogeneity in staff cost and abilities, is to compute the functional
dependency between the operating income (profit) during period t and the number of
employees:

Op. Incomet(Et) = E[St | Et, T̃t,Xt] − EtWt, (3)

This expression ignores other costs that are not directly affected by the number of em-
ployees, and assumes that the gross margin on items sold and an eventual commission
rate have been absorbed into St. For simplicity, the dependency on other conditioning
variables has been suppressed from the notation.

3 Statistical Forecasting Models

The above framework for expected operating income maximization can cast into three
separate statistical forecasting problems: (i) traffic estimation, (ii) average price eval-
uation, (iii) sales volume forecasting. For the first part, we can rely on the extensive
methodological toolset proposed for call center traffic forecasting (e.g. [2,3]), whereas
we found that for the second, a linear regression model proves sufficient. We cover in
more depth the third model.

At a typical small- to medium-sized retail store, the number of items sold during
a daily interval (e.g. 30 minutes) will be a small integer. Due to the decomposition
of eq. (2), one needs to estimate the entire distribution of sales volume, not only the
expected value. Empirically, we find that a standard parametric forms, such as a condi-
tional Poisson distribution, generally provide a bad fit to the realized distribution. We
propose to use a more flexible framework, that of ordinal regression to estimate the
volume distribution.

Ordinal regression models [8,9] attempt to fit measurements that are observed on a
categorical ordinal scale. Let Z ∈ R be an unobserved variable and V ∈ {1, . . . , K}
be defined by discretizing Z according to ordered cutoff points

−∞ = ζ0 < ζ1 < · · · < ζK = ∞.

We observe V = k if and only if ζk−1 < Z ≤ ζk, k = 1, . . . , K . The proportional odds
model assumes that the cumulative distribution of V on the logistic scale is modeled by
a linear combination of input variables x, i.e.

logitP (V ≤ k |x) = logitP (Z ≤ ζk |x) = ζk − θ′x,

2 Empirically, it is often noted that the average item price goes down with the number of items
sold during a given period; this may be attributable to the propensity of shoppers to buy more
items during sales, and the fact that for some store types, for instance clothing and apparel,
additional items beyond the first few are often lower-priced accessories that complement main
purchases.

56 N. Chapados, M. Joliveau, and L.-M. Rousseau

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
ro

b
ab

ili
ty

Number of Items Sold

Traffic = 15 persons / 30 min.
Nb of Employees = 1

Traffic = 50 persons / 30 min.
Nb of Employees = 7

Number of Items Sold

Fig. 1. Distributional sales volume forecast at two operation points. Left: With only a single
employee in the store, and relatively low store traffic, the most likely number of items sold during
a 30-minute period is zero (with 45% probability). Right: With seven employees and higher
traffic, the distribution shifts rightward, exhibiting a mode between two and three items sold.

where θ are regression coefficients and logit(p) ≡ log p
1−p . Model parameters {ζi, θ}

can be estimated by maximum likelihood.
In our application, the variable V represents the sales volume during a sub-daily

interval (e.g. a 30-minute period). Incorporating the number of employees and the store
traffic among the inputs (along with calendar regressors for representing monthly, day-
of-week and intraday seasonalities), we obtain a flexible distributional forecast of the
sales volume. Figure 1 illustrates two different operation points for a store that was part
of our case study (see section 4).

4 Case Study

We carried out a case study of the proposed methodology on data provided by a medium-
sized chain of upscale clothing and apparel retail stores. Store locations are present in
every major Canadian cities and obey normal retail opening hours and sales cycle, in-
cluding increased holiday activity and the presence of occasional promotional events.
A total of 16 months of historical data was used, covering the 2009–early-2010 period.
Confidentiality agreements preclude from giving additional details.

Sun

Mon

Tue

Wed

Thu

Fri

Sat

09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30

−4

−2

0

2

4

6

8

10

Fig. 2. Average revenue increase by day-of-week and time-of-day across all stores covered by the
case study

Retail Store Workforce Scheduling 57

We applied the forecasting methodology of section 3 to drive an operating income
maximization based on eq. (3), for all store locations and time periods covered in
the data. Using realized traffic, an improved staffing process would have resulted in
an average sales increase of 7% across all stores, resulting in an operating income
increase of 3%. Surprisingly, the model also indicates that stores were, on average,
slightly understaffed, and that those top- and bottom-line increases would have resulted
from increased staffing. Figure 2 shows how these revenue increases would have been
distributed across the week, on average.

5 Constraint Programming for Schedule Construction

We are now at the stage of building feasible schedules that maximize a store net
income, as opposed to the traditional minimization its labor expenses. Given a set of
employees E, a set of time periods T and a set of activities A = {w, r, m, b} (capturing
the occupation of an employee, who is either working, resting at home, taking a meal
or on break), we propose the following Constraint Programming model:

max
∑
t∈T

Rt
yw

t
−

∑
a∈A

Ca
t ya

t (4)

s.t. Regular(Π, xe
(all t∈T)) ∀e ∈ E (5)

GCC(x(all e∈E)
t , A, y

(all a∈A)
t) ∀t ∈ T (6)

ya
t ∈ {0, . . . , |E|} ∀a ∈ A, t ∈ T (7)

xe
t ∈ A ∀e ∈ E, t ∈ T (8)

The model is based on two sets of variables: xe
t specifies the activity (among those

in A) performed by employee e at time t, and ya
t represents the number of employees

performing each activity a at time t. The objective function (4) maximizes the revenue
forecasted at each time period given the chosen number of working employees (those
forecasted values are stored in table R) minus the salary expenses associated to each
type of activity (provided in table C). The values in table R are obtained from the
statistical forecasting model (cf. eq. (2)) for working employees; we can assume that
the revenue associated with other activities is zero. Constraints (5) enforce that each
employee’s schedules follows a certain number of regulations, which are captured in Π
(as proposed in [4,10]), constraints (6) link the x and y variables, while constraints (7)–
(8) define the domain of all variables. We plan to implement this straighforward model
in the coming weeks in order to present detailed results during the conference.

6 Conclusion

We have proposed a new methodology to forecast to expected revenue function asso-
ciated to the presence of a given number of employees in a retail store. The use of a
Constraint Program, as opposed to an Integer Program for instance, allows to easily
incorporate this non-linear function into a shift scheduling model. The overall approach
will thus allow to build schedules where employees are considered as a source a revenue
rather than a sole expense.

58 N. Chapados, M. Joliveau, and L.-M. Rousseau

References

1. Aldor-Noiman, S., Feigin, P.D., Mandelbaum, A.: Workload forecasting for a call center:
Methodology and a case study. Annals of Applied Statistics 3(4), 1403–1447 (2009)

2. Avramidis, A.N., Deslauriers, A., L’Ecuyer, P.: Modeling daily arrivals to a telephone call
center. Management Science 50(7), 896–908 (2004)

3. Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.: Statistical
analysis of a telephone call center: A queueing-science perspective. Journal of the American
Statistical Association 100(469), 36–50 (2005)

4. Demassey, S., Pesant, G., Rousseau, L.M.: Constraint programming based column generation
for employee timetabling. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524,
pp. 140–154. Springer, Heidelberg (2005)

5. Ernst, A., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An annotated bibliography of
personnel scheduling and rostering. Annals of Operations Research 127, 21–144 (2004)

6. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review
of applications, methods and models. European Journal of Operational Research 153, 3–27
(2004)

7. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: Tutorial, review, and research
prospects. Manufacturing and Service Operations Management 5(2), 79–141 (2003)

8. McCullagh, P.: Regression models for ordinal data (with discussion). Journal of the Royal
Statistical Society B 42(2), 109–142 (1980)

9. McCullagh, P., Nelder, J.A.: Generalized Linear Models, 2nd edn. Chapman & Hall, London
(1989)

10. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the multi-activity
shift scheduling problem. Journal of Heuristics 16, 373–392 (2010)

11. Shen, H., Huang, J.Z.: Forecasting time series of inhomogeneous poisson processes with
application to call center workforce management. Annals of Applied Statistics 2(2),
601–623 (2008)

12. Shen, H., Huang, J.Z.: Interday forecasting and intraday updating of call center arrivals.
Manufacturing and Service Operations Management 10, 391–410 (2008)

13. Taylor, J.W.: A comparison of univariate time series methods for forecasting intraday arrivals
at a call center. Management Science 54(2), 253–265 (2008)

Spatial and Objective Decompositions

for Very Large SCAPs

Carleton Coffrin1, Pascal Van Hentenryck1, and Russell Bent2

1 Brown University, Providence RI 02912, USA
2 Los Alamos National Laboratory, Los Alamos NM 87545, USA

Abstract. This paper reconsiders the single commodity allocation prob-
lem (SCAP) for disaster recovery, which determines where and how to
stockpile a commodity before a disaster and how to route the commod-
ity once the disaster has hit. It shows how to scale the SCAP algorithm
proposed in [1] to a geographical area with up to 1,000 storage locations
(over a million decision variables). More precisely, the paper shows that
spatial and objective decompositions are instrumental in solving SCAP
problems at the state scale (e.g., for the state of Florida). The practical
benefits of these decompositions are demonstrated on large-scale hurri-
cane disaster scenarios generated by Los Alamos National Laboratory
using state-of-the-art disaster simulation tools.

1 Background and Motivation

Every year, considerable human and monetary resources are spent to prepare
for, and recover from, seasonal hurricanes. Existing procedures rely on the ex-
perience of policy makers but they are often ad-hoc and do not exploit recent
progress in optimization to address natural disasters more effectively. Our ear-
lier research [1] demonstrated the benefits of optimization technology to meet
the population needs and to reduce storage and transportation costs by using a
two-stage stochastic optimization problems with explicit scenarios generated by
the National Hurricane Center (NHC) of the National Weather Service in the
United States. However, only disasters with up to 100 storage locations (city
scale) were considered, although large-scale planning may require as many as
1,000 storage locations (state scale). Indeed, the start-of-the-art algorithm in
[1], and its underlying MIP model, have difficulties scaling to problems with 250
storage locations and runs out of memory on larger instances.

This paper shows how to scale the approach for disasters at the state scale
using spatial and objective decompositions. The spatial decomposition performs
a geographic clustering of the repositories and aggregates the flows across the
clusters, thus reducing the number of decision variables considerably. The objec-
tive decomposition applies when the SCAP objective function is lexicographic: It
separates the decisions taken for meeting the demands and reducing travel time.
Experimental results demonstrate the benefits of both approaches on large and
very large instances respectively. Given the sizes and complexity of the models
considered here, our results are purely empirical: Their practicability is demon-
strated by showing improvements on the practice in the field. Note also that the

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 59–75, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 C. Coffrin, P. Van Hentenryck, and R. Bent

resulting approaches are now deployed and are activated each time a hurricane
of category 3 or above threatens the coast of the United States.

The rest of the paper is organized as follows. Section 2 of this paper reviews
related work. Section 3 presents a mathematical formulation of the SCAP and
Section 4 reviews the approach presented in [1]. Sections 5 and 6 present the
novel decomposition techniques. Section 7 reports the experimental results and
Section 8 concludes the paper.

2 Previous Work

Humanitarian logistics has been investigated since the 1990s but has received in-
creased attention in recent years due to the increase in major disasters [2,3,4,5].
Humanitarian logistics gives rise optimization problems combining aspects of
inventory routing, supply chain management, warehouse location, and vehicle
routing, creating novel challenges for existing technology [2,3]. They often com-
bine some, or all, of the following features:

1. Multi-Objective Functions - High-stake disaster situations often have to
balance conflicting objective goals (e.g. operational costs, speed of service,
and unserved customers) [6,7,8,9,1].

2. Non-Standard Objective Functions - A makespan time objective in
VRPs [6,10,1] or equitability objectives [8].

3. Arbitrary Side Constraints - Limited resources, a fixed vehicle fleet [8,1],
fixed latest delivery time [6,8], or a insufficient budget [7,11,1].

4. Stochastic Aspects - Disasters are inherently unpredictable. Preparations
and recovery plans must be robust with respect to many scenarios [7,9,1].

Applications in humanitarian logistics are studied at a variety of scales in space
and time. Some problems consider a global scale with time measured in days
and weeks [7], while others focus on the minute-by-minute details of delivering
supplies from local warehouses directly to the survivors [6,8,1,12]. This paper
considers the so-called “last mile” of distribution which involves warehouse se-
lection and customer delivery at the city and state scales.

Humanitarian logistics applications have been mostly formulated as mixed
integer programming (MIP) models, which often do not scale to real-world in-
stances [8,6,12]. Moreover, MIP solvers have been shown to have severe diffi-
culties with some of their unique features even when problem sizes are small
(e.g., minimizing the latest delivery time in VRPs [10]). Our earlier research [1]
demonstrated that hybrid optimization and decomposition methods can yield
high-quality solutions to such challenges and scale to real-world instances. This
work extends those results and shows that spatial and objective decompositions
provide significant scaleability. To the best of our knowledge, this is the first
time that SCAPs with over 100 storage locations have been solved.

3 The Single Commodity Allocation Problem (SCAP)

In formalizing SCAPs, a populated area is represented as a graph G = 〈N, E〉
where N represents the locations of interest to the allocation problem: Sites

Spatial and Objective Decompositions for Very Large SCAPs 61

Given:
Repositories: i ∈ R

Capacity: RCi

Investment Cost: RIi

Maintenance Cost: RMi

Vehicles: i ∈ V
Capacity: VC
Start Depot: H+

i

End Depot: H−
i

Scenario Data: i ∈ S
Scenario Probability: Pi

Available Sites: ARi ⊂ R
Site Demand: Di,j∈R

Travel Time Matrix: Ti,1..l,1..l

Weights: Wx, Wy, Wz

Budget: B

Output:
The amount stored at each warehouse
Delivery schedules for each vehicle

Minimize:
Wx ∗ Unserved Demands +
Wy ∗ MAXi∈V Tour Timei+
Wz ∗ Investment Cost +
Wz ∗ Maintenance Cost

Subject To:
Vehicle and site capacities
Vehicles start and end locations
Costs ≤ B

Notes:
Every warehouse that stores comm-
odities must be visited at least once

Fig. 1. The Single Commodity Allocation Problem Specification

requiring the commodity after the disaster (e.g., hospitals, shelters, and public
buildings) and vehicle storage depots. The required commodity can be stored at
any node of the graph subject to some side constraints and the graph edges, E,
have weights representing travel times. The weights on the edges form a metric
space but it is not Euclidean due to the transportation infrastructure. Moreover,
travel times can vary in different disaster scenarios due to road damage. The
primary outputs of a SCAP are (1) the amount of commodity to be stored at
each node; (2) for each scenario and each vehicle, the best plan to deliver the
commodities. Figure 1 summarizes the entire problem, which we now describe
in detail.

Objectives. The objective function aims at minimizing three factors: (1) The
amount of unsatisfied demands; (2) the time it takes to meet those demands; (3)
the cost of storing the commodity. Since these values are not expressed in the
same units, it is not always clear how to combine them into a single objective
function. Furthermore, their relative importance is typically decided by policy
makers on a case-by-case basis using weights Wx, Wy , and Wz . Note that the
routing objective is to minimize the time of the last delivery, which is required
by the Department of Homeland Security in the United States. Minimizing the
time of the last delivery is a very difficult aspect of this problem as demonstrated
in [10]. However, when solved with a combination of large neighborhood search
and constraint programming, the stochastic storage decisions quickly become
the most difficult aspect as the number of storage locations increases.

Side Constraints. Each repository i ∈ R has a maximum capacity RCi to store
the commodity. It also has a one-time initial cost RIi (the investment cost) and
an incremental cost RMi for each unit of commodity to be stored. As policy
makers often work within budget constraints, the sum of all costs in the system
must be less than a budget B. Every repository can act as a warehouse and a

62 C. Coffrin, P. Van Hentenryck, and R. Bent

customer and its role changes on a scenario-by-scenario basis depending on site
availability and demands. Additionally, if a repository is acting as a warehouse
for its own demands a vehicle must still visit that location before the stored
commodities are available for consumption.

SCAPs also feature a fleet of V vehicles which are homogeneous in terms of
their capacity VC . Each vehicle i ∈ V has a unique starting depot H+

i and ending
depot H−

i . Unlike classic vehicle routing problems [13], customer demands in
SCAPs often exceed the vehicle capacity and hence multiple deliveries are often
required to serve a single customer.

Stochasticity. SCAPs are specified by a set of S different disaster scenarios.
Scenario i ∈ S has an associated probability Pi and specifies the set ARi of sites
which remain intact after the disaster. Moreover, scenario i specifies, for each
repository j ∈ R, the demand Dij and site-to-site travel times Ti,1..l,1..l (where
l = |N |) which capture the damages to the transportation infrastructure.

4 The Basic Approach

This section reviews the state-of-the-art algorithm for solving the SCAP problem
[1]. This multi-stage algorithm, depicted in Figure 2, decomposes the storage,
customer allocation, and routing decisions. The stages and the key decisions of
each stage are as follows: (1) Stochastic Storage: Which repositories store the
commodity and how much do they store? (2) Customer allocation: How is the
stored commodity allocated to each customer? (3) Repository routing: For each
repository, what is the best customer distribution plan? (4) Fleet routing: How
to visit the repositories to minimize the time of the last delivery? The decisions
of each stage are considered independently and use the optimization technique
most appropriate to their nature. The first two stages are formulated as MIPs,
the third stage is solved optimally using constraint programming (CP), and the
fourth stage uses large neighborhood search (LNS) and CP.

This work only considers modifications to the Stochastic Storage Model (SSM)
and uses identical algorithms for the customer allocation and routing aspects
of the problem. Hence, we only review the SSM in detail. The SSM captures
the cost and demand objectives precisely but approximates the routing aspects.

Multi-Stage-SCAP(SCAP G)
1 D ← StochasticStorageProblem(G)
2 for s ∈ S
3 do C ← CustomerAllocationProblem(Gs,Ds)
4 for w ∈ R
5 do T ← RepositoryPathRoutingProblem(Gs, Cw)
6 I ← AggregateF leetRoutingProblem(Gs, T)
7 Fs ← PathBasedF leetRoutingProblem(Gs, T , I)
8 return F

Fig. 2. The Hybrid Stochastic Optimization Algorithm for Solving SCAPs

Spatial and Objective Decompositions for Very Large SCAPs 63

Variables:
Storedi ∈ (0, RCi) - Units stored at repository i
Openi ∈ {0, 1} - Non-zero storage at repository i

Second stage variables for each scenario s:
Outgoingsi ∈ (0, RCi) - Total units shipped from repository i
Incomingsi ∈ (0, Dsi) - Total units coming to repository i
Unsatisfiedsi ∈ (0, Dsi) - Demand not satisfied at repository i
Sentsij ∈ (0, RCi) - Units shipped from repository i to repository j

Minimize:

Wx

X

s∈S

Ps

X

i∈R

Unsatisfiedsi + Wz

X

i∈R

(RIi Openi + RMi Storedi)+

Wy

X

s∈S

Ps

X

i∈R

X

j∈R

Tsij Sentsij/VC

Subject To:X

i∈R

(RIi Openi + RMi Storedi) ≤ B (1)

RCi Openi ≥ Storedi ∀i ∈ R (2)
Incomingsi + Unsatisfiedsi = Dsi ∀s ∈ S, i ∈ R (3)
Outgoingsi ≤ Storedi ∀s ∈ S, i ∈ R (4)X

j∈R

Sentsij = Outgoingsi ∀s ∈ S, i ∈ R (5)

X

j∈R

Sentsji = Incomingsi ∀s ∈ S, i ∈ R (6)

Outgoingsi = 0 ∀s ∈ S, i �∈ ARs (7)

Fig. 3. The MIP Formulation for the Stochastic Storage Model (SSM)

In particular, the SSM only considers the time to move the commodity from
the repository to a customer, not the maximum delivery time. Let D be a set
of delivery triples of the form 〈source, destination, quantity〉. The delivery-time
component of the objective is replaced by

Wy

∑
〈s,d,q〉∈D

Tsd
q

VC

Figure 3 presents the SSM formulation which scales well with the number of
disaster scenarios since the number of integer variables only depends on the
number of repositories. The meaning of the decision variables is explained in the
figure. The objective function sums the unsatisfied demands for each scenario,
the investment and maintenance costs, and the shipping costs for each scenario.
The second stage costs are obviously multiplied by the scenario probabilities.
Constraint (1) captures the budget constraint and constraint (2) ensures that
a repository is open if it stores the commodity. Constraint (3) states for each
scenario that the unsatisfied demand of a repository is the repository’s demand
minus the incoming supply (which can include local storage). Constraint (4)
expresses that the supply shipped from repository i cannot exceed the amount of
commodity stored at repository i. Constraints (5–6) connect the sent, incoming,

64 C. Coffrin, P. Van Hentenryck, and R. Bent

Fig. 4. Storage Clustering and Flow Aggregation

and outgoing variables and constraint (7) ensures that damaged repositories ship
no commodity.

The experimental results in [1] indicate that the fleet-routing stage of the al-
gorithm is the dominant factor in the algorithm runtime. However, for instances
with more than 100 storage locations, the SSM quickly dominates the runtime
(see Section 7 for numerical evidence). The next two sections present two alter-
native models for the stochastic storage problem that provide significant benefits
for scalability. Both stochastic storage models rely on a key observation: In the
baseline algorithm (Figure 2), a customer allocation is computed in the SSM
and then recomputed in the customer allocation stage (once the uncertainty is
revealed). This means, when a customer allocation stage is used, only the storage
decisions are a necessary output of the SSM. The two new SSM models achieve
better performance by approximating or ignoring the customer allocation in the
first-stage storage problem.

5 Spatial Decomposition

In the SSM, the number of variables required for the customer allocation is
quadratic in the number of repositories and multiplicative in the number of
scenarios (i.e., |S||R|2). The number of variables can easily be over one million
when the number of repositories exceeds two hundred. Problems of this size can
take up to 30 seconds to solve with a linear-programming solver and the resulting
MIP can take several hours to complete. Our goal is thus to reduce the number
of variables in the MIP solver significantly, without degrading the quality of the
solutions too much.

The Aggregate Stochastic Storage Model (ASSM) is inspired by the structure
of the solutions to the baseline algorithm. Customers are generally served by
storage locations that are nearby and commodities are only transported over
large distances in extreme circumstances. We exploit this observation by using

Spatial and Objective Decompositions for Very Large SCAPs 65

a geographic clustering of the repositories. The clustering partitions the set of
repositories R into C clusters and the repositories of a cluster i ∈ C are denoted
by CLi. For a given clustering, we say that two repositories are nearby if they are
in the same cluster; otherwise the repositories are far away. Nearby repositories
have a tightly-coupled supply and demand relationship and hence the model
needs as much flexibility as possible in mapping the supplies to the demands.
This flexibility is achieved by allowing commodities to flow between each pair
of repositories within a cluster (as was done in SSM). When repositories are
far away, the precise supply and demand relationship is not as crucial since the
warehouse to customer relationship is calculated in the customer allocation stage
of the algorithm. As a result, it is sufficient to reason about the aggregate flow
moving between two clusters at this stage of the algorithm. The aggregate flows
are modeled by introducing meta-edges between each pair of clusters. If some
demand from cluster a ∈ C must be met by storage locations from cluster b ∈ C,
then the sending repositories CLb pool their commodities in a single meta-edge
that flows from b to a. The receiving repositories CLa then divide up the pooled
commodities in the meta-edge from b to meet all of their demands. Addition-
ally, if each meta-edge is assigned a travel cost, the meta-edge can approximate
the number of trips required between two clusters by simply dividing the total
amount of commodities by the vehicle capacity, as is the case for all the other
flow edges. Figure 4 visually indicates how to generate the flow decision variables
for the clustered problem and how commodities can flow on meta-edges between
customers in different clusters.

As stated above, the number of variables in the SSM is quadratic in the num-
ber of repositories. Given a clustering CLi∈C , the number of variables in the
clustered storage model is (1) quadratic within each cluster (i.e.,

∑
i∈C |CLi|2);

(2) quadratic in the number of clusters, (i.e., |C|2); (3) and linear in the reposi-
tories connections to the clusters (i.e., 2|R||C|). The exact number of variables
clearly depends on the considered clustering. However, given a specific number
|C| of clusters, a lower bound on the number of variables is obtained by dividing
the repositories evenly among all the clusters, and the best possible variable re-
duction on a problem of size n with c clusters and s scenarios is s (n2

c +2nc+c2).
Given a clustering CLi∈C and cluster to cluster travel times CTscc for each

scenario, the ASSM is presented in Figure 5. The meaning of the decision vari-
ables is explained in the figure. The objective function has two terms for the
delivery times, one for the shipping between repositories inside a cluster and
one for shipping between clusters. Constraints (1–2) are the same as in the SSM
model. Constraints (3–4) take into account the fact that the commodity can
be shipped from repositories inside the clusters and from clusters. Constraints
(5–6) aggregate the outgoing and incoming flow for a cluster, while constraints
(7–8) express the damage constraints. Note that the array of variables Sentsij is
sparse and only includes variables for repositories inside the same cluster (this
is not reflected in the notations for simplicity).

66 C. Coffrin, P. Van Hentenryck, and R. Bent

Calculate:

CSc =
X

i∈CLc

RCi - Total storage in cluster c

CDsc =
X

i∈CLc

Dsi - Total demand in cluster c in scenario s

Variables:
Storedi ∈ (0, RCi) - Units stored at repository i
Openi ∈ {0, 1} - Non-zero storage at repository i

Second stage variables for each scenario s:
Unsatisfiedsi ∈ (0, Dsi) - Unsatisfied demands at repository i
Incomingsic ∈ (0, Dsi) - Units shipped from cluster c to repository i
Outgoingsic ∈ (0, RCi) - Units shipped from repository i to cluster c
Sentsij ∈ (0, min(RCi, Dsj)) - Units shipped from repository i to repository j
Linkscd ∈ (0, min(CSc, CDsd)) - Units sent from cluster c to cluster d

Minimize:

Wx

X

s∈S

Ps

X

i∈R

Unsatisfiedsi + Wz

X

i∈R

(RIi Openi + RMi Storedi)+

Wy

X

s∈S

Ps

X

c∈C

X

i∈CLc

X

j∈CLc

Tsij Sentsij/VC + Wy

X

s∈S

Ps

X

c∈C

X

d∈C

CTscd Linkscd/VC

Subject To:X

i∈R

(RIi Openi + RMi Storedi) ≤ B (1)

RCi Openi ≥ Storedi ∀i ∈ R (2)X

j∈R

Sentsji +
X

c∈C

Incomingsic + Unsatisfiedsi = Dsi ∀s ∈ S, i ∈ R (3)

X

j∈R

Sentsij +
X

c∈C

Outgoingsic ≤ Storedi ∀s ∈ S, i ∈ R (4)

X

i∈CLc

Outgoingsid = Linkscd ∀s ∈ S, c ∈ C, d ∈ C (5)

X

i∈CLd

Incomingsic = Linkscd ∀s ∈ S, c ∈ C, d ∈ C (6)

Sentsij = 0 ∀s ∈ S, i �∈ ARs, j ∈ R (7)
Outgoingsic = 0 ∀s ∈ S, i �∈ ARs, c ∈ C (8)

Fig. 5. The MIP Formulation for the Aggregate Stochastic Storage Model (ASSM)

6 Objective Decomposition

The ASSM significantly decreases the number of variables but it still requires
creating a quadratic number of variables for each cluster. Since this is multi-
plied by the number of scenarios, the resulting number of variables can still be
prohibitive for very large instances. This section presents an objective decompo-
sition which applies when the objective is lexicographic, i.e., when policy makers
set the values of the weights such that Wx � Wy � Wz, which is often the case
in practice. Let us contemplate what this means for the behavior of the model
algorithm as the budget parameter B is varied. With a lexicographic objective,
the model will first try to meet as many demands as possible. If the demands
can be met, it will reduce delivery times until it cannot be reduced further or the

Spatial and Objective Decompositions for Very Large SCAPs 67

Calculate:

SDs =
X

i∈R

Dsi - Total demand in scenario s

Variables:
Storedi ∈ (0, RCi) - Units stored at repository i
Openi ∈ {0, 1} - Non-zero storage at repository i
Useds ∈ (0,SDs) - Units used in scenario s

Minimize:X

s∈S

Ps (SDs − Useds)

Subject To:
RCi Openi ≥ Storedi ∀i ∈ R (1)X

i∈ARs

Storedi ≥ Useds ∀s ∈ S (2)

X

i∈R

(RIi Openi + RMi Storedi) ≤ B (3)

Fig. 6. Phase 1 of the Lexicographic Stochastic Storage Model (LSSM-1)

budget is exhausted. As a result, the optimization with a lexicographic objective
exhibits three phases as B increases. In the first phase, the satisfied demands,
routing times, and costs increase steadily. In the second phase, the satisfied de-
mands remain at a maximum, the routing times decrease, and the costs increase.
In the last phase, the satisfied demands remain at a maximum, the routing times
remain at a minimum, and the costs plateau even when B increases further. The
experimental results from [1] confirm this behavior.

The Lexicographic Stochastic Storage Model (LSSM) assumes that the objec-
tive is lexicographic and solves the first phase with a much simpler (and faster)
model. The goal of this phase is to use the available budget in order to meet the
demands as best possible and it is solved with a two-stage stochastic allocation
model that ignores the customer allocation and delivery time decisions. Since
each scenario s has a total demand SDs that must be met, it is sufficient to
maximize the expected amount of demands that can be met, conditioned on the
stochastic destruction of storage locations. Figure 6 presents such a model. The
meaning of the decision variables is explained in the figure.

During the first phase, the model in Figure 6 behaves similarly to the SSM
for a lexicographic objective. But the model does not address the delivery times
at all, since this would create a prohibitive number of variables. To compensate
for this limitation, we use a second phase whose idea can be summarized by the
following greedy heuristic: ”if all the demands can be met, use the remaining
budget to store as much additional commodity as possible to reduce delivery
times”. This greedy heuristic is encapsulated in another MIP model (LSSM-2)
presented in Figure 7. LSSM-2 utilizes the remaining budget while enforcing the
decisions of the first step by setting the lower bound of the StoredExi variables
to the value of the Storedi variables computed by LSSM-1. This approximation
is rather crude but produces good results on actual instances (see Figures 9 and
10 in Section 7). Our future work will investigate how to improve this formulation
by taking account of customer locations, while still ignoring travel distances.

68 C. Coffrin, P. Van Hentenryck, and R. Bent

Variables:
StoredExi ∈ (Storedi, RCi) - Units stored at repository i
OpenExi ∈ {0, 1} - Non-zero storage at repository i

Maximize:X

i∈R

StoredExi

Subject To:
RCi OpenExi ≥ StoredExi ∀i ∈ R (1)X

i∈R

(RIi OpenExi + RMi StoredExi) ≤ B (2)

Fig. 7. Phase 2 of the Lexicographic Stochastic Storage Model (LSSM-2)

Greedy-Truck-Agent (GTA)()
1 while there exists some commodity to be picked up and demands to be met
2 do if I have some commodity
3 then drop it off at the nearest demand location
4 else pick up some commodity from the nearest warehouse
5 goto final destination

Fig. 8. The Agent-based SCAP Algorithm Simulating the Practice in the Field

1
10

0
10

00
0

 Maximum Storage Model Runtime

Instance Number

R
un

tim
e

(s
ec

on
ds

)
lo

g
sc

al
e

●

●
●

●

●

●

●

●

1 2 3 4 6 7 5 9 10 12

● SSM
ASSM
LSSM

0
2

4
6

 Average Distance from Original Routing Solution

Instance Number

R
el

at
iv

e
D

is
ta

nc
e

(%
)

● ● ● ● ● ● ● ●

1 2 3 4 6 7 5 9 10 12

● SSM
ASSM
LSSM

Fig. 9. Runtime and Quality Tradeoffs of SSM, ASSM, and LSSM

The resulting approach is less flexible than the SSM and ASSM approaches
because it ignores the weighting factors Wx, Wy , and Wz . However, it produces
a significant increase in performance by decreasing the number of decision vari-
ables from quadratic to linear. The asymptotic reduction is essential for scal-
ing the algorithm to very large instances. Note that it is well-known in the
goal-programming community that lexicographic multi-objective programs can
be solved by a series of single-objective problems [14]. The sub-objectives are
considered in descending importance and, at each step, one sub-objective is op-
timized in isolation and side constraints are added to enforce the optimization

Spatial and Objective Decompositions for Very Large SCAPs 69

of the previous steps. Our decomposed storage model follows the same schema,
except that the second step is necessarily approximated due to its size.

7 Benchmarks and Results

Benchmarks. The benchmarks were produced by Los Alamos National Labo-
ratory and are based on the infrastructure of the United States. The disaster
scenarios were generated by state-of-the-art hurricane simulation tools similar to
those used by the National Hurricane Center [15]. The problem sizes and algo-
rithm parameters are presented in Table 1. The Trip Lower Bounds are simply
the total amount of commodities that are shipped divided by the vehicle capac-
ity. These values are included because they are a good metric for the routing
difficulty of a benchmark. The amount of commodities that need to be moved
can vary significantly from scenario to scenario. Therefore, we present both the
smallest and the largest trip bounds across all the scenarios. Benchmarks 3 and
6 feature scenarios where the hurricane misses the region; this results in the
minimum trip bound being zero. This is important since any algorithm must
be robust with respect to empty disaster scenarios which arise in practice when
hurricanes turn away from shore or weaken prior to landfall. The algorithm
parameters include a runtime cap for the client allocation and fleet routing sub-
problems (defined in [1]), and the number of clusters that will be used in the
ASSM model. All of the experimental results have fixed values of Wx, Wy, and
Wz satisfying the field constraint Wx � Wy � Wz and we vary the value of
the budget B to evaluate the algorithm (as was done in [1]). The results are
consistent across multiple weight configurations, although there are variations
in the problem difficulties.

The Algorithm Implementation and the Baseline Algorithm. The algorithms were
implemented in the Comet system [16] and the experiments were run on Intel
Xeon CPU 2.80GHz machines running 64-bit Linux Debian. To validate our
results, we compare our proposed storage models with those of the previous

Table 1. Benchmark Statistics and Algorithm Parameters (timeouts in seconds)

Benchmark |R| |V | |S| Min Trip Max Trip CA Fleet Clusters
Lower Bound Lower Bound Timeout Timeout

BM1 25 4 3 6 27 30 10 4

BM2 25 5 3 60 84 30 20 4

BM3 25 5 3 0 109 30 20 4

BM4 30 5 3 35 109 30 20 4

BM5 100 20 3 82 223 90 200 4

BM6 25 5 18 0 140 30 20 4

BM7 30 10 18 7 23 30 20 4

BM9 250 10 18 7 23 250 90 10

BM10 500 20 18 13 45 - 180 -

BM12 1000 20 3 64 167 - 300 -

70 C. Coffrin, P. Van Hentenryck, and R. Bent

Table 2. Runtime Statistics in Seconds for the Baseline Algorithm (SSM)

Benchmark μ(T1) σ(T1) μ(T∞) σ(T∞) μ(STO) σ(STO) μ(CA) μ(RR) μ(AFR) μ(FR)

BM1 89.89 21.90 39.96 13.01 0.9293 0.4670 9.257 0.1746 10.057 10.13

BM2 169.1 35.93 66.02 10.47 0.5931 0.2832 16.67 0.1956 19.26 20.00

BM3 98.58 14.51 61.07 13.79 0.3557 0.1748 7.225 0.1050 12.04 13.33

BM4 184.2 26.25 68.76 5.163 0.8892 0.3940 21.24 0.2075 19.58 20.00

BM5 1308 62.01 520.5 32.70 46.70 21.31 90.87 1.225 128.0 200.0

BM6 723.5 58.76 75.34 3.079 5.165 3.076 10.81 0.1281 13.35 15.56

BM7 832.0 97.05 75.13 13.31 16.15 5.153 5.500 0.4509 19.31 20.00

BM9 16123 13661 11108 13459 10672 13458 143.7 1.377 65.97 90.00

Table 3. Runtime Statistics in Seconds for the Aggregated Model (ASSM)

Benchmark μ(T1) σ(T1) μ(T∞) σ(T∞) μ(STO) σ(STO) μ(CA) μ(RR) μ(AFR) μ(FR)

BM1 89.77 22.19 39.25 13.28 0.5464 0.2389 9.043 0.1791 10.04 10.12

BM2 169.4 35.91 65.93 10.49 0.4846 0.1850 16.81 0.2084 19.26 20.00

BM3 98.73 14.49 61.15 13.81 0.3986 0.1609 7.245 0.1092 12.05 13.33

BM4 182.8 24.28 69.74 3.822 0.6950 0.3717 20.88 0.2122 19.56 20.00

BM5 1266 70.41 487.4 35.18 18.40 7.700 90.88 0.8691 123.9 200.0

BM6 714.86 59.04 73.28 1.032 3.130 1.041 10.57 0.09642 13.27 15.56

BM7 823.6 98.79 67.95 12.99 8.849 2.666 5.479 0.4475 19.28 20.00

BM9 6377 803.6 1184 363.8 747.7 363.5 153.9 0.8491 66.72 90.00

study [1]. Our routing time results also include the solution from the Greedy Truck
Agent (GTA) algorithm proposed in [1] which mimics how actual decision makers
operate in the field and thus provides a sense of improvement and scale in solu-
tion quality. The agent-based algorithm uses the same storage model but builds a
routing solution without any optimization. Each vehicle works independently to
deliver as much commodity as possible using the algorithm in Figure 8.

Baseline Efficiency Results. Table 2 depicts the runtime results for the baseline
algorithm in [1]. In particular, the table reports, in average, the total time in
seconds for all scenarios (T1), the total time when the scenarios are run in parallel
(T∞), the time for the storage model (STO), customer allocation (CA), the
repository routing (RR), the aggregate fleet routing (AFR), and the fleet routing
(FR). The first three fields (T1, T∞, STO) are averaged over ten identical runs
on each of the budget parameters. The last four fields (CA, RR, AFR, FR) are
averaged over ten identical runs for each of the budget parameters and each
scenario. Since these are averages, the times of the individual components do
not sum to the total time. The results show that the approach scales well with
problems with 100 repositories or less. However, benchmark 9 (250 repositories)
clearly indicates that the runtime of the storage model has exploded and becomes
the dominating factor of the algorithm. Benchmarks 10 and 12 are unsolvable
due to memory issues: These models require over 3,000,000 variables.

Spatial and Objective Decompositions for Very Large SCAPs 71

Table 4. The Number of Variables in the SSM and ASSM

Benchmark BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM9 BM10 BM12

SSM 1875 1875 1875 2700 30000 11250 16200 1125000 - -
ASSM 1116 1206 1248 1470 12246 7344 9576 237420 - -

Lower Bound 1101 1101 1101 1443 9948 6606 8658 204300 - -

Table 5. Degradation of the Routing Times Compared to the SSM Results

Benchmark BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM9 BM10 BM12

ASSM Change(%) -0.356 0.0834 -0.108 -0.504 -0.887 3.54 -0.308 2.95 - -

GTA Change(%) 56.4 43.1 73.7 52.0 64.0 92.2 55.5 259 - -

ASSM Quality and Efficiency Results. Table 3 depicts the improvement of our
ASSM for the SCAP algorithm. Observe in column STO that ASSM runs about
twice as fast on benchmarks 1 through 7 and 14 times faster on benchmark 9.
The clustering was obtained using ten samples of the k-means algorithm. The
sample with the smallest mean sum is used in the clustered storage model. The
distances between clusters are calculated on a scenario-by-scenario basis using
the average distance between all pairs of points in each cluster. The runtime
benefits of the clustering algorithm are largely due to the reduction in the number
of variables in the model. Section 5 analyzed the variable reduction and pointed
out that the reduction is tightly coupled with the clustering. Due to geographic
considerations in these instances, the clustering exhibits great variation from
instance to instance and it is important to report the actual reduction in problem
size. Table 4 presents the number of variables of the SSM and the ASSM, as well
as the lower bound on the number of variables. Observe that the benefits become
more significant as the problem size grows and the runtime results confirm this.

Table 5 describes the relative changes in routing times when using ASSM
instead of SSM. The quality degradation of the GTA algorithm is also presented
to provide a sense of scale. Because the ASSM is a courser approximation of
the travel times, some decrease in routing quality is expected. Fortunately, the
reduction in quality is not significant and negligible when compared to GTA. It
is also surprising that sometimes the clustering model improves the quality of
the routing solution. This is a result of the fact that the travel time objective
is only approximated in all of the stochastic storage models. When there are
large distances between nodes, the ASSM meta-edges provide a more accurate
estimate of the number of trips needed between two clusters. Unfortunately,
the ASSM still suffers from the same memory issues as the SSM on very large
instances and is unable to solve benchmarks 10 and 12.

LSSM Quality and Efficiency Results. Table 6 depicts the performance improve-
ment of the LSSM and the consistent reduction in runtime of the storage model
(STO), which runs about 1,000 times faster than the SSM on benchmark 9 on
the most difficult configuration and 200 times faster on average. Benchmarks
10 and 12 are now in the scope of the solution method. Note that, due to the

72 C. Coffrin, P. Van Hentenryck, and R. Bent

Table 6. Runtime Statistics in Seconds for the Lexicographic Model (LSSM)

Benchmark μ(T1) σ(T1) μ(T∞) σ(T∞) μ(STO) σ(STO) μ(CA) μ(RR) μ(AFR) μ(FR)

BM1 94.97 24.38 41.32 12.79 0.11 0.06 11.46 0.19 9.819 10.00

BM2 169.3 36.04 65.59 10.43 0.16 0.08 16.86 0.24 19.25 20.00

BM3 98.85 14.31 60.97 13.76 0.17 0.09 7.28 0.13 12.12 13.34

BM4 183.8 24.26 69.15 3.53 0.25 0.19 21.27 0.25 19.59 20.00

BM5 1240 69.07 468.6 33.70 2.12 0.86 90.94 0.81 120.6 200.0

BM6 719.8 56.91 70.46 0.08 0.35 0.09 11.06 0.09 13.23 15.56

BM7 810.5 100.8 59.54 13.51 0.70 0.15 5.40 0.37 19.17 20.00

BM9 5859 458.6 488.9 26.32 53.84 27.30 164.8 0.70 65.92 90.00

BM10 32048 1708 1921 108.9 17.34 22.02 1385* 8.66 175.7 180.0

BM12 18201 73.11 6146 46.54 14.12 0.22 5485* 14.28 227.3 300.0

Table 7. Degradation of the Routing Times Compared to the SSM Results

Benchmark BM1 BM2 BM3 BM4 BM5 BM6 BM7 BM9 BM10 BM12

LSSM Change(%) 3.47 -0.891 0.165 0.919 3.38 7.02 -0.0884 6.77 - -

GTA Change(%) 61.1 42.5 74.5 53.5 67.0 103 55.5 295 78.5 91.5

enormous size of benchmarks 10 and 12, the customer allocation stage does not
return a feasible solution within 1000 seconds. To resolve this difficulty, we sim-
ply ignore the integer variables, solve the LP relaxation, and round the results.
Table 6 indicates that solving the LP relaxation of these problems can take over
ten minutes. The MIP solver is also terminated whenever the optimality gap is
smaller than 0.05% to stabilize its runtime behavior on the largest instances.

Table 7 describes the relative change in routing times from the SSM. The
quality degradation of the GTA algorithm is also presented to provide a sense of
scale. Because the LSSM has no information about the travel time, some decrease
in routing quality is expected. Again, it is impressive that the reduction is so
small (especially when compared with the GTA algorithm). This model is the
first that can solve benchmarks 10 and 12, and thus can report the relative
improvements over the GTA algorithm. However, it cannot report the relative
change compared to the SSM because that model cannot solve these instances.
Some policy makers may be concerned by the 7.0% increase in delivery time in
benchmark 6 and may prefer to use the SSM. However, some types of disasters
require immediate response where every minute is valuable. In those extreme
situations, the ASSM and LSSM provide a much faster alternative to the SSM.
Our results thus allow policy makers to choose on a case-by-case basis which is
preferable: A more immediate response or a higher quality solution.

The lack of information about travel time is an advantage for the memory
usage of the LSSM. Only three pieces of the problem specification need to be
considered, the repository information, scenario demands, and scenario damages.
This resolves the memory issues faced by the other models since the travel times
can be handled at the scenario level and not globally. This allows the LSSM to
scale to the largest benchmarks. Figure 9 visually summarizes the runtime and
quality tradeoffs of the SSM, ASSM, and LSSM. The left graph shows how the

Spatial and Objective Decompositions for Very Large SCAPs 73

500000 1000000 1500000

0
20

40
60

80
10

0

 Expected Demand Met

Budget ($)

E
xp

ec
te

d
D

em
an

d
M

et
 (

%
)

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

SSM
LSSM

500000 1000000 1500000

0
50

0
10

00
15

00

 Expected Last Delivery Time

Budget ($)

E
xp

ec
te

d
T

im
e

● ●

●

●

●

●

●

●
●

●

●
●

●
● ● ● ● ● ●

●

GTA
LSSM
SSM

Fig. 10. Behavior of SSM and LSSM on Benchmark 6

runtime of all the storage models varies as the number of repositories increases.
The logarithmic scale illustrates the significant time savings of ASSM and LSSM
over SSM. The right graph shows the change in the routing quality when ASSM
and LSSM are used instead of SSM. Despite the significant reduction in runtime,
the degradation of solution quality is no more than 6% on average.

Behavioral Analysis of LSSM. The LSSM ignores the algorithm parameters
Wx, Wy, and Wz, and implicitly assumes the field constraint Wx � Wy � Wz .
Although the other storage models are more flexible in this regard, all the stor-
age models are configured for this field constraint for the purpose of this study.
This means that the storage decisions for the LSSM will be exactly the same as
the SSM until all of the demands are met. Once all of the demands are satis-
fied, the LSSM will degrade because it cannot determine how to use additional
funds to decrease the delivery time. However, as the budget increases, it will
approach the same solution as the SSM because these solutions correspond to
storing commodities at all of the repositories. Figure 10 presents the experi-
mental results on benchmark 6 which exhibits this behavior most dramatically
(other benchmarks are less pronounced and are omitted for space reasons). The
graph on the left shows how the satisfied demand increases with the budget,
while the graph on the right shows how the last delivery time changes. We can
see that, as the satisfied demand increases, the routing times of both algorithms
are identical until the total demand is met. At that point, the routing times
diverge as the travel distance becomes an important factor in the objective,
but they re-converge as the budget approaches its maximum and all of the
repositories are storing commodities. These results confirm our behavioral ex-
pectation. The experimental results also demonstrate that the degradation of
the decomposed model is not significant when compared to the choices made by
the GTA algorithm, representing the practice in the field.

74 C. Coffrin, P. Van Hentenryck, and R. Bent

8 Conclusion

This paper studied the scalability of the SCAP problem in the field of humanitar-
ian logistics. The SCAP models the strategic planning process for disaster recov-
ery with stochastic last-mile distribution. The paper proposed two new stochastic
storage models that produce high quality solutions to real-world benchmarks
that were hitherto unsolvable. The algorithms use spatial and objective de-
compositions to exploit the problem structure and speedup stochastic storage
decisions. The experimental results on water allocation benchmarks indicate that
the algorithms are: (1) practical from a computational standpoint; (2) produce
significant scalability over previous work; (3) deliver better performance than ex-
isting relief delivery procedures. This work is currently deployed at Los Alamos
National Laboratory and is activated every time a hurricane of category 3 or
above threatens the United States in order to aid federal organizations such as
the Department of Energy and the Department of Homeland Security in prepar-
ing for, and responding to, disasters.

References

1. Van Hentenryck, P., Bent, R., Coffrin, C.: Strategic Planning for Disaster Recovery
with Stochastic Last Mile Distribution. In: [17], pp. 318–333

2. Wassenhove, L.V.: Humanitarian aid logistics: supply chain management in high
gear. Journal of the Operational Research Society 57(1), 475–489 (2006)

3. Beamon, B.: Humanitarian relief chains: Issues and challenges. In: 34th Interna-
tional Conference on Computers & Industrial Engineering, pp. 77–82 (2008)

4. United-States Government: The Federal Response to Hurricane Katrina: Lessons
Learned (2006)

5. Fritz Institute.: Fritz Institute Website (2008), http://www.fritzinstitute.org
6. Barbarosoglu, G., Ozdamar, L., Cevik, A.: An interactive approach for hierarchical

analysis of helicopter logistics in disaster relief operations. European Journal of
Operational Research 140(1), 118–133 (2002)

7. Duran, S., Gutierrez, M., Keskinocak, P.: Pre-positioning of emergency items
worldwide for care international. Interfaces (2009) (to appear)

8. Balcik, B., Beamon, B., Smilowitz, K.: Last mile distribution in humanitarian relief.
Journal of Intelligent Transportation Systems 12(2), 51–63 (2008)

9. Gunnec, D., Salman, F.: A two-stage multi-criteria stochastic programming model
for location of emergency response and distribution centers. In: INOC (2007)

10. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts.
Transportation Science 42(2), 127–145 (2008)

11. Griffin, P., Scherrer, C., Swann, J.: Optimization of community health center loca-
tions and service offerings with statistical need estimation. IIE Transactions (2008)

12. Gunes, C., van Hoeve, W.J., Tayur, S.: Vehicle routing for food rescue programs:
A comparison of different approaches. In: [17], pp. 176–180

13. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia, Pennsylvania (2001)

Spatial and Objective Decompositions for Very Large SCAPs 75

14. Ignizio, J.P.: A review of goal programming: A tool for multiobjective analysis.
The Journal of the Operational Research Society 29(11), 1109–1119 (1978)

15. FEMA: FEMA HAZUS Overview (2010), http://www.fema.gov/plan/prevent/
hazus

16. Dynadec, Inc.: Comet 2.1 User Manual (2009), http://dynadec.com/
17. Lodi, A., Milano, M., Toth, P. (eds.): CPAIOR 2010. LNCS, vol. 6140. Springer,

Heidelberg (2010)

Upgrading Shortest Paths in Networks

Bistra Dilkina, Katherine J. Lai, and Carla P. Gomes

Computer Science Department, Cornell University
{bistra,klai,gomes}@cs.cornell.edu

Abstract. We introduce the Upgrading Shortest Paths Problem, a new
combinatorial problem for improving network connectivity with a wide
range of applications from multicast communication to wildlife habitat
conservation. We define the problem in terms of a network with node
delays and a set of node upgrade actions, each associated with a cost and
an upgraded (reduced) node delay. The goal is to choose a set of upgrade
actions to minimize the shortest delay paths between demand pairs of
terminals in the network, subject to a budget constraint. We show that
this problem is NP-hard. We describe and test two greedy algorithms
against an exact algorithm on synthetic data and on a real-world instance
from wildlife habitat conservation. While the greedy algorithms can do
arbitrarily poorly in the worst case, they perform fairly well in practice.
For most of the instances, taking the better of the two greedy solutions
accomplishes within 5% of optimal on our benchmarks.

1 Introduction

Many applications in areas as diverse as VLSI circuit design, QoS routing, and
traffic engineering involve designing networks under constrained shortest paths
and budget limits. For example, in a transportation network, a key goal is to
connect major cities via short routes to better serve the bulk of the traffic. In
a multicast communication setting where a single node is broadcasting to a set
of subscribers, it is important to minimize the latency, or the shortest path
delays between the source node and all the subscribers. In wildlife conservation,
our motivating application from computational sustainability [8], the landscape
connectivity between important habitat patches is measured as the length of the
shortest path in terms of landscape resistance to animal movement. Maintaining
good landscape connectivity, i.e. short resistance paths, is key to resilient wildlife
populations in an increasingly fragmented habitat matrix.

In this work, we introduce a new general network improvement problem rele-
vant in such settings. The problem is defined with respect to a network with node
delays where the delay between a pair of nodes is the shortest path delay in the
network, while the overall delay of the network is measured as the average delay
among a designated set of node pairs. Given a set of node upgrade actions with
respective costs and upgraded node delays, we seek to choose the best possible
upgrade strategy in terms of minimizing total upgrade cost and resulting overall

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 76–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Upgrading Shortest Paths in Networks 77

network delay. We refer to this problem as the Upgrading Shortest Paths Problem.
We consider two optimization settings. In the budget-constrained setting, the
goal is to find an upgrade strategy such that the total upgrade cost does not
exceed a given budget B, and the resulting upgraded network has minimum
overall delay over all possible strategies which obey the budget constraint. On
the other hand, in the delay-constrained setting, the goal is to find a minimum-
cost set of nodes to be upgraded so that the overall delay in the resulting network
meets a given bound D.

Some network improvement problems have been studied previously. In partic-
ular, most of the previous work has concentrated on the edge-delay variant where
either edges can be upgraded directly, or nodes are to be upgraded, effectively up-
grading all the edges incident to the upgraded nodes. Many of the studies assume
a particular relationship between the delays and the upgraded delays. For exam-
ple, if a node v is upgraded, then the delay of each edge incident to v reduces by a
factor x where 0 ≤ x < 1, and if both endpoints of an edge are upgraded, then its
delay reduces by a factor of x2. Paik et al. [15] introduce several NP-hard network
improvement problems under this upgrade model and unit costs, including the
minimum-cost network improvement problem subject to a maximum delay con-
straint over all pairs of nodes in graph. Krumke [11] studies a similar network
improvement problem but the constraint is on the total delay of the minimum
spanning tree of the resulted upgraded network.

Although the edge-delay setting has been studied more than its node coun-
terpart, placing the delays on the nodes can be more appropriate in certain
applications. For example, in telecommunications, expensive equipment such as
routers and switches are at the nodes of the underlying network. Unfortunately,
while one can easily reduce an edge-weighted version to a node-weighted version,
the reverse does not usually hold for undirected graphs, and hence it is desirable
to work directly on node-weighted problems in undirected graphs. In this work,
we address the more general node-weighted variant.

Landscape Connectivity

Although the network optimization problem considered here is very general, the
main motivating application for our work is in Conservation Planning.

Habitat fragmentation is one of the principal threats to biodiversity. The focus
of much ecology research is to quantify landscape connectivity [17], a measure
of the degree to which the landscape facilitates or impedes movement among
habitat patches. The landscape is represented as a set of small parcels or pixels,
each of which has a resistance value that gives the species-specific cost of moving
through particular landscape features. Resistance models are inferred by relating
landscape characteristics to genetic distance between individuals at different
locations [4] or to radio-collar movement data. Under the Least-Cost Path model,
the connectivity between two designated habitat patches is measured as the
length of the shortest resistance-weighted path between them [16].

78 B. Dilkina, K.J. Lai, and C.P. Gomes

Preserving and restoring connectivity for broad-scale ecological processes,
such as dispersal and gene flow, has become a major conservation priority [3].
While conservation biology has historically set conservation objectives and plans
irrespective of their cost, multiple studies in recent years have shown that system-
atic conservation planning is the right approach. It is possible to achieve conserva-
tion objectives at a fraction of the cost (or achieve higher targets for the same cost)
if the conservation and management costs are formally considered at the outset
of the planning process [13,10]. Decision-support tools to design efficient budget-
constrained conservation strategies are needed and yet still largely lacking.

By reducing the problem of maximizing landscape connectivity to the Up-
grading Shortest Paths problem, we provide conservation planners with a tool
to evaluate trade offs between costs and connectivity benefits as well as gen-
erate conservation plans with formal optimality guarantees. In particular, we
can model the pixels or parcels of land as nodes in the graph, and edges are
drawn between parcels that share boundaries. The resistance of each parcel is
the corresponding node delay, and its upgraded delay is the predicted effective
resistance of the parcel if it were under conservation management. Given pairs
of important habitat patches (i.e. existing conserved areas or subpopulations),
solving the combinatorial optimization problem designs a conservation strategy
that maximizes the resulting landscape connectivity.

Recently, the related problem of Wildlife Corridor Design was studied in [2,
9, 5]. In the optimization model used for designing wildlife corridors, the goal
is to maximize the total utility of the set of bought parcels while ensuring that
the parcels connect a designated set of reserves and that the total cost does not
exceed a specified budget. By enforcing connectivity of the purchased parcels, it
in effect pessimistically assumes that any land parcel that is not bought for the
wildlife corridor is no longer usable by the wildlife. In reality, choosing not to
buy a piece of land may not significantly impact whether wildlife will still be able
to use the land. In the landscape connectivity conservation problem discussed in
this work, each land parcel may contribute to the connectivity of the terminals,
whether or not it has been bought. The benefit of buying a piece of land is
reflected by decreasing the land’s effective resistance.

Our Contributions

In this paper, we introduce the Upgrading Shortest Paths problem, a new com-
binatorial problem for improving network connectivity in many real-world ap-
plications. We show that this problem is NP-hard. We give a formulation of the
problem as a multicommodity flow mixed integer program for solving it to op-
timality, as well as two fast greedy algorithms. We tested these approaches on
various synthetically generated planar graph instances and a real-world instance
from conservation planning, and we found that our MIP formulation scales sur-
prisingly well to instances with hundreds of nodes. While the greedy algorithms
can perform arbitrarily badly even in planar graphs, they performed fairly well,

Upgrading Shortest Paths in Networks 79

coming within 5% of optimal on most of these test instances. One interesting
phenomenon we observed is that the hardness of the instances is very much
correlated with the nature and magnitude of the generated upgraded delay values
for the nodes. Changes in node delays that were large in magnitude and varying
greatly from node to node resulted in longer running times for the MIP and
larger optimality gaps for the greedy algorithms.

The paper is organized as follows. First, we formally define the Upgrading
Shortest Paths Problem. Second, we characterize its computational complexity.
Third, we describe the three solution approaches. Finally, in the experiments
section we study their typical case behavior on a synthetic dataset and present
results for an instance derived from a real conservation planning setting.

2 The Upgrading Shortest Paths Problem

2.1 Problem Definition

We can define an instance of the decision version of the Upgrading Shortest
Paths (USP) problem as follows.

Definition 1 (The Upgrading Shortest Paths Problem)

Given: an undirected graph G = (V, E), a set of terminal pairs P ⊆ V × V ,
a cost function on the nodes c : V → R+, a delay function d : V → R+, a
delay function d′ : V → R+ where d′(v) ≤ d(v) for all v ∈ V , a budget value
B ≥ 0, and a delay value D ≥ 0.

Find: a set of nodes V ′ ⊆ V such that
∑

v∈V ′ cv ≤ B, and the average shortest
path for pairs in P is at most D when evaluated under the effective delays:

d̂(v) =

{
d′(v) if v ∈ V ′

d(v) otherwise
(1)

For convenience, we also define T to be the set of all terminals, or set of nodes
that appear in at least one pair p ∈ P . We can also define the following two
variations of the USP problem.

Definition 2 (Budget-constrained USP Problem). The delay value D is
not given as an input, and the objective is to find a set of nodes V ′ ⊆ V such
that

∑
v∈V ′ cv ≤ B, and the average shortest path for pairs in P is minimized.

Definition 3 (Delay-constrained USP Problem). The budget value B is
not given as an input, and the objective is to find a set of nodes V ′ ⊆ V such
that the average shortest path for pairs in P is at most D, and the total cost∑

v∈V ′ cv is minimized.

80 B. Dilkina, K.J. Lai, and C.P. Gomes

2.2 Computational Complexity

We now show that the two variants of the USP problem are NP-hard.

Theorem 1. The budget-constrained Upgrading Shortest Paths Problem is NP-
hard.

Proof. To show that budget-constrained USP is NP-hard, we use a reduction
from the knapsack problem which is NP-hard [7]. In a knapsack instance, we are
given items indexed {1, . . . , n} with sizes {c1, . . . , cn} and values {d1, . . . , dn}.
The goal is to find some subset S that maximizes

∑
i∈S di subject to the con-

straint that
∑

i∈S ci ≤ B, where B is the capacity of the knapsack.
Let G be a path graph with endpoints s and t, and n interior points vi,

one for each item in the knapsack instance. Note that the only shortest path
between s and t is the entire path. We can now construct a USP instance with
the graph G, one terminal pair (s, t), and a budget value of B. The nodes s
and t have zero cost and delay. Each intermediate node vi has cost ci, delay di,
and upgraded delay of 0. We can now map a set of items S exactly to the set
of nodes in G that represent them, and this set of nodes has total cost

∑
i∈S ci

and improves the total shortest path length by
∑

i∈S di when bought. Since
the optimal solution to the USP instance minimizes the shortest path length
while satisfying the budget constraint, it in effect finds the set of nodes with the
maximum total decrease in delay, thus exactly solving the knapsack instance.
Therefore, the budget-constrained USP is NP-hard. Instances that involve more
complicated graphs than a simple path graph can be viewed as having multiple
knapsack instances to choose from, and instances with more than one demand
pair may have overlapping knapsack instances where items are bought once but
may contribute to multiple knapsacks.

Theorem 2. The delay-constrained USP problem is NP-hard and can only be
approximated within an Ω(log |V |) factor unless P=NP.

Proof. To show this result directly, we use a reduction from set cover which has
the same hardness results [1]. In a set cover instance, we are given a universe
of elements U = {1, . . . , n}, a family S of candidate sets Sj each of which has
a cost cj . The goal is to find a family of sets C ⊆ S such that they cover all of
the elements, i.e. ∪S∈CS = U , and such that the total cost of the sets in C is
minimized. We can construct a USP instance where there is a zero-delay node vi

for each element i in U , and the terminal pairs set P is composed of all pairs of
these nodes. Each set Sj is similarly represented by a node uj with delay 1, cost
cj and upgraded delay 0. Each node uj is connected to the nodes vi for which
i ∈ Sj as well as every other node uk. Thus the shortest path delay between any
two distinct nodes is at least 1, and upgrading a set of nodes uj such that every
node vi is adjacent to at least one of these nodes decreases all of the delays to
0. Thus if we set the target average delay D to 0 and minimize the cost necessary

Upgrading Shortest Paths in Networks 81

to achieve this delay, we are exactly solving the set cover problem, and the cost
of the nodes in the optimal solution is equal to the cost of the sets in the set
cover instance.

3 Solution Methods

In this section, we present an exact method for solving the two variations of
the USP problem using a MIP formulation as well as two greedy algorithms for
the budget-constrained variation. To evaluate the quality of an approximation
algorithm or a heuristic, it is standard to calculate the optimality gap of a
solution by taking the difference between the approximate and exact solutions
and dividing this result by the optimal value. However, this is a problematic
and uninformative measure for the budget-constrained problem. For example, if
the best upgraded shortest paths all have delay 0 and a heuristic finds a nearly-
optimal solution of average delay ε, the heuristic still has an infinite optimality
gap. For the sake of evaluating the performance of our solution methods, for the
rest of this paper we will regard the objective function for the budget-constrained
problem as maximizing the improvement in the average shortest path delay.

For all of the methods we present, we can prune the search space by elim-
inating all nodes v ∈ V for which upgrading the node will never improve the
delay between any terminal pair in P . To find these nodes, we first calculate
single-source shortest paths from each terminal to the rest of the nodes in both
the graph with no upgrades and the graph with all nodes upgraded. A node v
will never improve the delay for a terminal pair p if the shortest path for p with
no upgrades is shorter than the shortest possible path passing through v in the
fully upgraded graph. If this condition holds for all terminal pairs, then under
no upgrade strategy would v ever improve the objective, and hence we can safely
prune it.

3.1 Mixed Integer Programming

We can solve the Upgrading Shortest Paths problem exactly by formulating it
as a mixed integer program (MIP). We use a multicommodity flow formulation
for computing the shortest delay path for each terminal pair p = (s, t) ∈ P .
For this formulation, we transform the given undirected graph G to a directed
graph G′ where delays now appear on the edges instead of the nodes. Each node
v in the graph is replaced by two nodes, the “in” node v− and the “out” node
v+, that are then connected with two parallel edges directed from v− to v+.
We refer to these edges as the “original node edge” ev and the “upgraded node
edge” e′v, and their delays are set to the original and upgraded delays of the node
v, respectively. Each undirected edge {u, v} in the graph becomes two directed
edges (u+, v−) and (v+, u−) with delay 0. See Figure 1 for an example of an
edge in G and its corresponding subgraph in G′. We can now state the flow
formulation for the constructed graph G′.

82 B. Dilkina, K.J. Lai, and C.P. Gomes

We now describe the variables used in our formulation:

– xv: binary variable indicating whether node v ∈ V is to be upgraded.
– cost: the total cost of all upgraded nodes.
– fpe: continuous variable indicating the flow of commodity p on edge e,

i.e. whether edge e is chosen to be on the shortest path for the terminal
pair p.

– fpv: continuous variable indicating the flow of commodity p on edge ev. In
an integral solution, this indicates whether the original node v is chosen to
be on the shortest path for the terminal pair p.

– f ′
pv: continuous variable indicating the flow of commodity p on edge e′v. In

an integral solution, this indicates whether the upgraded node v is chosen to
be on the shortest path for the terminal pair p.

– delayp: variable for the effective shortest path delay for terminal pair p.
– avgdelay: variable for the delay over all terminal pairs.

The full MIP for the budget-constrained problem is shown in Equations (2)-
(18). The delay-constrained MIP is a simple modification of this MIP where the
objective function minimizes cost instead, and Constraint (16) is replaced by the
constraint avgdelay ≤ D. We use Constraints (3)-(10) to model each terminal
pair’s shortest delay path as a multicommodity flow problem. For each terminal
pair (s, t), Constraints (3)-(8) force the nodes s and t to be the source and sink
of one unit of flow, respectively. We use δ−(v−) to indicate the set of incoming
edges to the node v− and δ+(v+) to indicate the set of outgoing edges from
node v+. The next constraints (9)-(10) enforce flow conservation through the
rest of the nodes in the graph. The total delay for a terminal pair p is equal
to the sum of delays of each edge e, scaled by the flow fpe going through it
(Constraint (13)).

Constraints (11)-(12) ensure that if a node v is chosen to be upgraded, only
the upgraded node edge e′v can carry flow; the original node edge ev is not to be
used. Similarly, if a node v is not chosen to be upgraded, only the original node
edge ev can be used to carry flow. Constraints (14) and (15) compute the total
cost of the upgraded nodes and the average delay of all terminal pairs, respec-
tively. Constraint (17) enforces that the upgrade decision variables are binary,
and Constraint (18) enforces that the flow variables are all non-negative.

v
−

v
+

u
+

u
− 0

0

du

d
′

u

dv

d
′

v

Fig. 1. The representation of nodes u, v, and an undirected edge between them in the
new directed graph G′. The delay of each edge is labeled.

Upgrading Shortest Paths in Networks 83

min avgdelay (2)
s.t. fps + f ′

ps = 1 ∀p = (s, t) ∈ P (3)∑
e∈δ−(s−)

fpe = 0 ∀p = (s, t) ∈ P (4)

fps + f ′
ps =

∑
e∈δ+(s+)

fpe ∀p = (s, t) ∈ P (5)

fpt + f ′
pt = 1 ∀p = (s, t) ∈ P (6)∑

e∈δ−(t−)

fpe = fpt + f ′
pt ∀p = (s, t) ∈ P (7)

0 =
∑

e∈δ+(t+)

fpe ∀p = (s, t) ∈ P (8)

∑
e∈δ−(v−)

fpe = fpv + f ′
pv ∀p = (s, t) ∈ P, ∀v �= s, t ∈ V (9)

fpv + f ′
pv =

∑
e∈δ+(v+)

fpe ∀p = (s, t) ∈ P, ∀v �= s, t ∈ V (10)

f ′
pv ≤ xv ∀p = (s, t) ∈ P, ∀v �= s, t ∈ V (11)

fpv ≤ 1 − xv ∀p = (s, t) ∈ P, ∀v �= s, t ∈ V (12)

delayp =
∑
v∈V

[d(v)fpv + d′(v)f ′
pv] ∀p ∈ P (13)

cost =
∑
v∈V

c(v)xv (14)

avgdelay =
1
|P |
∑
p∈P

delayp (15)

cost ≤ B (16)
xv ∈ {0, 1} ∀v ∈ V (17)

fpe, fpv, f
′
pv ≥ 0 ∀p ∈ P, e ∈ E, v ∈ V (18)

For both of the minimization problems, we implement pruning by setting xv = 0
for all nodes v ∈ V for which upgrading the node will never improve the delay
between any terminal pair in P . For each node v that will never improve the
delay for some particular pair p ∈ P , we add the constraint f ′

pv = 0.

3.2 A Naive Greedy Algorithm

One naive approach for the budget-constrained USP problem is to take the
current shortest paths between terminal pairs and upgrade them as much as
possible. This cuts down on the search space a great deal. Intuitively, the greedy
algorithm sorts the nodes in decreasing order by their heuristic value and at-
tempts to upgrade each node in the list with what is left of the budget. To
define the value for each node, the greedy algorithm first sets the values of every

84 B. Dilkina, K.J. Lai, and C.P. Gomes

s t

c(v1) = 0 c(v2) = B

d(v1) = 1 d(v2) = 2

d
′
(v1) = 1 d

′
(v2) = ε

c(v3) = 2B

d(v3) = 2

d
′
(v3) = 0v3

v2

v1

Fig. 2. In this example, the naive greedy algorithm will only examine the nodes v1 and
v3 since they are part of the current and best possible paths. Under a budget constraint
of B, the naive greedy algorithm will make no improvement to the delay even though
upgrading v2 would decrease it to an arbitrarily small ε > 0.

node to 0. Then, for each pair of terminals p = (s, t), it adds (d(v)− d′(v))/c(v)
to the value of each node v on the shortest path between s and t. The total
running time is that of running Dijkstra’s shortest paths algorithm from each
terminal, sorting the eligible nodes, and adding them in linear time. In total this
algorithm takes O(|T |(|E|+ |V | log |V |)) time, where T = {t : ∃(s, t) ∈ P} is the
set of terminals that show up in some terminal pair.

A similar alternative to the way this heuristic cuts down on its search space
is to consider only the nodes on the shortest paths that would exist if the entire
graph were upgraded; these are the best possible paths if the budget were infinite.
It is a simple matter to run both heuristics and take the better result; we will call
this combined approach the Naive Greedy algorithm. As with many heuristics,
this algorithm does not have a provable guarantee. In fact, it can do arbitrarily
poorly as shown in the example in Figure 2.

3.3 An Iterative Greedy Algorithm

Further improvement on the naive greedy algorithm can be gained by considering
nodes that are not considered by the naive greedy algorithm. After pruning and
eliminating the nodes that could never improve the delay for any terminal pair
(as described earlier in Section 3.1), we again assign a heuristic value to each
eligible node. Here, we redefine a node’s value to be the change in the average
shortest path delay if we were to upgrade that one node, divided by its cost.
The new greedy algorithm iteratively upgrades the node with the highest value
and recomputes the remaining nodes’ values before upgrading the next node.
After the algorithm exhausts the budget, it is possible that some of the nodes
it chose to upgrade no longer improve the solution. As such, it removes these
unnecessary nodes from the solution and starts over again but with the current
set of upgraded nodes and the leftover budget. We can repeat this process until
there is no longer any improvement made on the objective function, or we can
set a limit to the number of times that this is run. We will call this the Iterative
Greedy algorithm, and more detailed pseudocode is outlined in Algorithm 1.

The time complexity of this greedy algorithm is dominated by calls to the
function CalcShPaths(). Calculating single-source shortest paths for all of the

Upgrading Shortest Paths in Networks 85

Algorithm 1. The Iterative Greedy Algorithm
Input: input of the USP instance, a parameter NumIters, and the subroutines

– CalcShPaths(G, T , d, d′, V’): shortest path delays from the nodes t ∈ T to all

other nodes v ∈ V assuming the nodes in V’ have been upgraded

– CalcAvgDelay(pathDists, P): average delay for pairs in P

– CalcImpr(pathDists, P , v): improvement in average delay for P if v is upgraded

Output: A set V’ ⊆ V to upgrade

1 V’ ← ∅
2 spent ← 0

3 for i ← 1 to NumIters do

4 Q ← V − V’

5 pathDists ← CalcShPaths(G, T , d, d′, V’)

6 startAvgSP ← CalcAvgDelay(pathDists, P)

7 while Q �= ∅ do

8 foreach v ∈ Q do

9 if spent + c(v) ≤ B then value(v) ← CalcImpr(pathDists,P ,v)/c(v)

10 else Q ← Q − {v}
11 if Q �= ∅ then

12 Let v ∈ Q be the node for which value(v) is maximum

13 V’ ← V’ + {v}
14 Q ← Q − {v}
15 spent ← spent + c(v)

16 pathDists ← CalcShPaths(G, T , d, d′, V’)

17 deleted ← false

18 avgSP ← CalcAvgDelay(pathDists, P)

19 foreach v ∈ V’ do

20 if avgSP = CalcAvgDelay(CalcShPaths(G, T , d, d′, V’ − {v}), P)

then

21 V’ ← V’ − {v}
22 spent ← spent − c(v)

23 deleted ← true

24 if deleted = false or avgSP = startAvgSP then return V’

25 return V’

terminals is implemented by running Dijkstra’s algorithm |T | times using Fi-
bonacci heaps, which takes a total of O(|T |(|E| + |V | log |V |)) time. In each
iteration of the greedy algorithm, i.e. each iteration of the for loop starting
at Line 3, this function is called O(|V ′|) times. Having computed the shortest
paths, the function CalcAvgDelay() takes O(|P |) time to look up the shortest
path delay for each terminal pair. The function CalcImpr() needs to calculate
the upgraded delays of the shortest paths that must pass through v. This can
be done in O(1) time for each terminal pair (for a total of O(|P |) time for the
function) by adding up the shortest path delays from the node v to the two
terminals, removing the delay d(v) from both paths, and adding the upgraded
delay d′(v). Since the running times of these other functions and the various
loops are all dominated by the running time of the shortest-paths computations,
the total running time for each iteration of the greedy algorithm can be bounded
above by O(|V ||T |(|E| + |V | log |V |)).

86 B. Dilkina, K.J. Lai, and C.P. Gomes

s t

v1 v2

v3

c(v1) =
B

2
c(v2) =

B

2

d(v1) = 1 d(v2) = 1

d
′
(v1) = 0 d

′
(v2) = 0

c(v3) = B

d(v3) = 1

d
′
(v3) = 1− ε

Fig. 3. In this example, there is one terminal pair p = (s, t), and the initial shortest
path length is 1 via node v3. Under a budget constraint of B, the greedy algorithm
ignores both nodes v1 and v2 in favor of v3.

In terms of performance guarantees, this greedy algorithm can also perform
arbitrarily poorly. Greedy algorithms occasionally have provable guarantees in
some problems such as maximizing submodular functions [14, 6, 12]. Submodu-
lar functions capture settings where the payoff for choosing some set of items
exhibits diminishing returns, i.e. they are functions f that satisfy f(A ∪ B) ≤
f(A) + f(B) − f(A ∩ B). In a recent result, Lin and Bilmes [12] show that
it is possible to use a modification of our iterative greedy approach to get a
constant approximation when maximizing a submodular function subject to a
budget constraint. Their algorithm takes the better of the two solutions of a)
performing the greedy algorithm and b) choosing the single element x for which
c(x) ≤ B and f(x) is maximized. Unfortunately, their small modification fails
to work here because the budget-constrained USP problem, when posed as a
maximization problem under the choice of V ′, is not submodular. We give an
example in Figure 3. Buying either of the nodes v1 or v2 alone does not decrease
the shortest path length, but buying both of them decreases it by 1 (and is in
fact the optimal solution). The iterative greedy algorithm would preferentially
add nodes that immediately improve the objective function, so it would choose
v3 and use up the entire budget in the process. Choosing the one element that
improves the objective the most also gives the same result. Since this is only
an improvement of ε to the optimal improvement of 1, the performance of the
greedy algorithm can be made arbitrarily worse by setting ε to be an arbitrarily
small but positive value.

4 Experimental Results

We implemented and tested the greedy algorithms against the exact solution
provided by using a MIP solver. To test these algorithms, we created synthetic
problem instances on square grid graphs. The initial delay and cost of each
node was chosen uniformly at random from the range [50, 1000]. Three terminal
pairs were chosen from a set of four randomly chosen terminals (two set in
opposite corners of the graph) by taking the edges in the all-pairs shortest-paths
minimum spanning tree on the terminals. Three approaches were used to model
the upgraded delay function:

Upgrading Shortest Paths in Networks 87

scaled. Each upgraded delay value is some scalar factor times the original delay
value, i.e. d′(v) = cd(v) for some c ∈ [0, 1].

constant. Each upgraded delay is equal to the same constant 50.
tiered. For nodes with delay value d(v) in the range (500, 1000), the upgraded

delay value is 500, and those with d(v) in the range [100, 500], d′(v) is set
to 75.

We first tested the performance of solving the MIP encoding exactly by using
IBM ILOG CPLEX 11 on 100 instances of 20 by 20 grid graphs (400 nodes)
with pruning as described earlier. We varied the budget value B between 0 and
Bmax, the total budget necessary to achieve the shortest possible delays. Each
value Bmax is specific to the instance and is calculated by solving the budget
minimization MIP. As shown in Figure 4a, the problem exhibits easy-hard-easy
behavior as the budget is increased. It is notable on these instances that the
easy-hard-easy trend is most pronounced for the constant model and the scaled
model for c = 0.1. As a general trend, instances where the change in node delays
are larger and vary a great deal are harder than instances where the new node
delays represent very little change. The MIP scaled surprisingly well for larger
grid graphs, as can be seen in Figure 4b.

4.1 Greedy Algorithm Performance

The naive greedy algorithm does not always perform very well, though it some-
times outperforms the iterative greedy algorithm when the budget nears Bmax.
The iterative greedy algorithm performed very well on these randomly generated

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
on

ds
)

Normalized Budget

Upgraded Delay Model
Tiered

Constant
Scaled 0.1

Scaled 0.5
Scaled 0.9

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
on

ds
)

Normalized Budget

Graph Size
20x20
25x25

30x30
35x35

(a) All models (b) constant

Fig. 4. (a) Median MIP running times for different upgraded delay models on 100
instances of 20x20 grid graphs with 3 terminal pairs. The budget ranges from 0 to
100% of the maximum budget necessary for the instance. (b) Median MIP running
times for different grid graph sizes under the constant upgraded delay model.

88 B. Dilkina, K.J. Lai, and C.P. Gomes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

O
pt

im
al

ity
 G

ap

Normalized Budget

Worst Naive Grdy
Worst Iter. Grdy
Med Naive Grdy

Med Iter. Grdy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

O
pt

im
al

ity
 G

ap

Normalized Budget

Worst Naive Grdy
Worst Iter. Grdy
Med Naive Grdy

Med Iter. Grdy

(a) constant (b) tiered

Fig. 5. The worst and median performances of the greedy algorithms are given from
running on 100 instances of 20x20 grid graphs on two of the upgraded delay models

instances. Both the median and mean performance of the algorithm on 100 sam-
ples were within 5% of optimal for all of the upgraded delay models. As expected,
there were occasionally instances where the algorithm did poorly, though given
the nature of our synthetic instances, this did not occur for many instances, nor
was the result ever found to be worse than 60% of optimal. Figure 5 shows the
average and worst case performances of the greedy algorithm on our data set.

By the heuristic nature of the greedy algorithms, both of the greedy implemen-
tations were very fast. In our experiments, the naive greedy algorithm finished
in at most 0.02 seconds, and the iterative greedy algorithm finished in at most
0.5 seconds.

4.2 Results on Grizzly Bear Data

We apply our solution approaches to data derived from a real conservation set-
ting. We use the data for the grizzly bear corridor design problem studied in [2].
The goal in this work was to ensure connectivity between three major national
conservation parks with existing grizzly populations. The data was compiled by
Dr. Jordan Suter and is given in terms of habitat suitability, or utility, values
and costs for different land parcels in the geographical area surrounding the
three wildlife reserves. For each land parcel, we generated landscape resistance
values that were inversely correlated with their utility values. In many ecological
studies, habitat suitability and resistance are treated as complementary values.
Hence, we compute the resistance of nodes on the same scale as the utilities
resist(v) = minu∈V util(u) + maxu∈V util(u)− util(v).

At a 10 by 10 km pixel resolution, the resulting network has 3299 parcels
(nodes) and 3 terminal pairs (connecting the three reserves). We solved the 10km
grizzly instance for different resistance models for both the budget-constrained
and delay-constrained formulations. Figure 6 presents results from the scaled
model for c = 0.1. The other resistance models behaved qualitatively similarly,
although this was the most computationally demanding setting for the MIP
formulation. The graph on the left plots the Pareto frontier between cost and

Upgrading Shortest Paths in Networks 89

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 50 100 150 200 250 300 350 400

In
itC

on
n

-
C

on
nD

is
t

Cost in Millions

budget-constr OPT scaled 0.1
budget-constr GREEDY scaled 0.1

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1

T
im

e
(s

ec
on

ds
)

Normalized Constraint (most to least constrained)

budget-constr scalar-small
conn-constr scalar-small

Fig. 6. Results for the 10km grizzly instance for the scaled 0.1 resistance model. Left
plot shows the tradeoff between the cost spend and the improvement in delay achieved
by the optimal as well as the iterative greedy solutions. Right plot shows the running
time of both the budget-constrained and delay-constrained formulations as a function
of the tightness of the respective constraint.

delay, i.e. the tradeoff curve of improvement in average terminal pair delay as we
increase the budget allowed for upgrades. Such analysis can provide important
insight for conservation planning as a small fraction of the maximum budget is
enough to achieve more than half of the connectivity improvement. The graph on
the right plots the computation time versus the normalized constraint for both
constrained variants of the problem. For all resistance models, the minimum
cost delay-constrained problem usually required more time to solve to optimality
than the minimum delay budget-constrained variant. While the wildlife corridor
design problem cannot be solved to optimality within hours for this instance [5],
the respective Upgrading Shortest Paths problem on the same graph is solvable
to optimality in a practical time frame.

5 Conclusions and Future Work

In this paper, we introduced the USP problem, a new NP-hard combinatorial
problem for improving network connectivity in real-world applications. We also
provided a MIP formulation that scaled very well with the size of the graph.
This was a surprisingly positive result given the bad scaling behavior of MIP
formulations for many other combinatorial network design problems. This is also
a very practical result because in the context of conservation planning, problem
instances are usually quite large, on the order of thousands of nodes. The greedy
algorithms provided very high quality solutions in practice and can be used for
extremely large instances.

The introduction of the USP problem also opens up several interesting open
problems. Our greedy algorithms perform well but can do arbitrarily poorly.
An open research direction is to design approximation algorithms with provable
performance guarantees. It would also be interesting to study exactly why this
MIP scales so well as compared to other combinatorial network design problems.

90 B. Dilkina, K.J. Lai, and C.P. Gomes

In the context of conservation planning, our model can also be generalized to
capture other features such as multiple species of wildlife that have different
resistance values for the same land parcel. We can also study the generalized
model where each node can have different upgraded delay values available at
different costs. This would model more fine-tuned applications where there is a
discrete spectrum of actions that can be taken to decrease the inherent delay or
resistance of a node.

Acknowledgments

This research was supported by NSF Expeditions in Computing award for
Computational Sustainability (Grant 0832782) and by the USDA Forest
Service, Rocky Mountain Research Station (10-JV-11221635-24). Katherine J.
Lai is supported by a Graduate Research Fellowship from the National Science
Foundation.

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for
k-restrictions. ACM Trans. Algorithms 2, 153–177 (2006)

2. Conrad, J., Gomes, C.P., van Hoeve, W.-J., Sabharwal, A., Suter, J.: Connec-
tions in networks: Hardness of feasibility versus optimality. In: Van Hentenryck,
P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 16–28. Springer,
Heidelberg (2007)

3. Crooks, K.R., Sanjayan, M. (eds.): Connectivity Conservation. Cambridge Univer-
sity Press, Cambridge (2006)

4. Cushman, S.A., McKelvey, K.S., Schwartz, M.K.: Use of empirically derived source-
destination models to map regional conservation corridors.. Conservation Biol-
ogy 23(2), 368–376 (2009)

5. Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conser-
vation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140,
pp. 102–116. Springer, Heidelberg (2010)

6. Feige, U., Mirrokni, V.S.: Maximizing non-monotone submodular functions. In:
FOCS, pp. 461–471 (2007)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

8. Gomes, C.P.: Computational Sustainability: Computational methods for a sus-
tainable environment, economy, and society. The Bridge, National Academy of
Engineering 39(4) (Winter 2009)

9. Gomes, C.P., van Hoeve, W.-J., Sabharwal, A.: Connections in networks: A hybrid
approach. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 303–307.
Springer, Heidelberg (2008)

10. Joseph, L.N., Maloney, R.F., Possingham, H.P.: Optimal allocation of resources
among threatened species: a project prioritization protocol. Conservation Biol-
ogy 23(2), 328–338 (2009)

11. Krumke, S.: Improving Minimum Cost Spanning Trees by Upgrading Nodes. Jour-
nal of Algorithms 33(1), 92–111 (1999)

Upgrading Shortest Paths in Networks 91

12. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization of
submodular functions. In: Human Language Technology Conference, NAACL/HLT
(2010)

13. Naidoo, R., Balmford, A., Ferraro, P.J., Polasky, S., Ricketts, T.H., Rouget, M.:
Integrating economic costs into conservation planning. Trends in Ecology & Evo-
lution 21(12), 681–687 (2006)

14. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations
for maximizing submodular set functions-I. Mathematical Programming 14(1),
265–294 (1978)

15. Paik, D., Sahni, S.: Network upgrading problems. Networks 26(1), 45–58 (1995)
16. Singleton, P.H., Gaines, W.L., Lehmkuhl, J.F.: Landscape permeability for large

carnivores in washington: a geographic information system weighted-distance and
least-cost corridor assessment. Res. Pap. PNW-RP-549: U.S. Dept. of Agric., Forest
Service, Pacific Northwest Research Station (2002)

17. Taylor, P.D., Fahrig, L., Henein, K., Merriam, G.: Connectivity is a vital element
of landscape structure. Oikos 73, 43–48 (1993)

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 92–98, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Parallel Machine Scheduling with Additional Resources:
A Lagrangian-Based Constraint Programming Approach

Emrah B. Edis1 and Ceyda Oguz2

1 Dokuz Eylül University – Department of Industrial Engineering, Buca, 35160, Izmir, Turkey
emrah.edis@deu.edu.tr

2 Koç University - Department of Industrial Engineering, Sariyer, 34450, Istanbul, Turkey
coguz@ku.edu.tr

Abstract. This study deals with an unrelated parallel machine scheduling
problem with one additional resource type (e.g., machine operators). The
objective is to minimize the total completion time. After giving the integer
programming model of the problem, a Lagrangian relaxation problem (LRP) is
introduced by relaxing the constraint set concerning the additional resource. A
general subgradient optimization procedure is applied to a series of LRPs to
maximize the lower bound for the original problem. To generate efficient upper
bounds for the original problem, a constraint programming (CP) model is
applied by taking the LRP solutions as input regarding the machine
assignments. For the problem, a pure CP model is also developed to evaluate its
performance. All the solution approaches are evaluated through a range of test
problems. The initial computational results show that Lagrangian-based CP
approach produces promising results especially for larger problem sizes.

Keywords: scheduling, parallel machines, additional resources, Lagrangian
relaxation, constraint programming.

1 Introduction

Parallel machine scheduling (PMS) with additional resources is a significant area of
research and involves scheduling a set of jobs over a discrete time horizon, where
each job requires some constant amount of a limited cumulative resource over its
processing time. This study deals with an unrelated (i.e., heterogeneous) PMS
problem with one additional resource type (e.g., machine operators) which has an
arbitrary (i.e., not fixed) but limited size. Given n jobs, m unrelated parallel machines,
discrete integer resource requirements of jobs, resi (i =1,…,n), processing time of job
i on machine j (j=1,…,m), pij, and available size of the single additional resource, R;
the aim is to schedule the jobs on the machines with the objective of minimizing total
completion time without preemption and subject to additional resource constraints.

So far a number of researchers deal with PMS problems with additional resources.
While most of them assume that machines are identical [e.g., 1,2,3] or dedicated [e.g.,
4, 5], only few studies deal with uniform or unrelated machines [e.g., 6]. Except a few
[e.g., 7, 8], all the studies aim to minimize makespan (i.e., the completion time of the
last job). In terms of solution approaches, a number of studies give polynomial-time
algorithms for some special cases, e.g., two or three machines, unit processing times,

 Parallel Machine Scheduling with Additional Resources 93

or 0/1 resource requirements, [e.g., 2,4,7]. Realizing that many problems are NP-hard,
researchers focus on exact and heuristic algorithms. Exact algorithms [e.g., 9, 10] are
relatively few due to the combinatorial nature of the problem. Problem-based
heuristics [e.g., 9] and metaheuristic approaches [e.g., 11] are also not many.

Lagrangian relaxation (LR) may also be a suitable technique for PMS problems
with additional resources. For unit processing times, Ventura and Kim [7] and Edis et
al. [8] propose Lagrangian-based heuristic algorithms by relaxing the resource
constraints and obtain efficient results. On the other hand, constraint programming
(CP) is another technique to be used in especially sequencing and scheduling
applications. In the literature, CP and LR are integrated in different manners (e.g.,
CP-based LR for the automatic recording problem [12]). It is also shown that solving
relaxed sub-problems (e.g., machine assignment and resource allocation) with integer
programming (IP) techniques, and handling sequencing and scheduling sub-problems
by CP techniques generate more efficient results [13,14,15,16]. For minimizing
makespan, Edis and Ozkarahan [17] proposed a combined IP/CP model for a PMS
problem with additional resources and machine eligibility restrictions. Hooker [18]
proposed a logic based Benders decomposition (LBBD) approach for a different class
of PMS problems. The LBBD is performed by partitioning the original problem into a
relaxed IP master problem and a series of CP scheduling sub-problems. The
information obtained by solving sub-problems is given back into the IP model by
Benders’ cuts. Since the resource constraints are related to individual machines rather
than across all machines, such problems can easily be decomposed into independent
single machine sub-problems each of which can be handled individually by CP.

In this paper, on the other hand, we focus on a PMS problem with a common
additional resource across all machines and propose a Lagrangian-based CP approach
(LBCPA). Within LBCPA, by utilizing a standard subgradient optimization
algorithm, a series of Lagrangian relaxation problems (LRPs) (obtained by relaxing
the resource constraints) are solved and the infeasible solutions of LRPs are converted
into feasible ones by a CP model. The rest of the paper is organized as follows.
Section 2 gives the IP model of the problem together with its LRP. Section 3 presents
the details of LBCPA and gives a pure CP model for the original problem. Finally, the
computational results, conclusions and further research issues are given in Section 4.

2 Integer Program and its Lagrangian Relaxation Problem

With the given scheduling horizon length, T, the IP model is presented as follows:

  = = =
n

i

m

j

T

pt ijt
ij

xt
1 1

 Minimize (1)

s.t.  = = =m

j

T

pt ijt
ij

x
1

1 i=1, …, n (2)

 1
1

1 ≤ =
−+

=
n

i

pt

ts ijs
ij x j=1,…,m; t=1, …, T (3)

   = =
−+

= ≤n

i

m

j

pt

ts ijsi
ij Rxres

1 1

1
t=1, …, T (4)

 1} ,0{∈ijtx i=1, …, n; j=1,…,m; t= 1,…, T (5)

94 E.B. Edis and C. Oguz

In the above formulation, xijt = 1 if job i is assigned to machine j and completes its
processing at time t, and xijt = 0 otherwise. The objective function (1) aims to
minimize the total completion time of the jobs. Constraint set (2) states that each job
should certainly be completed at one machine. Constraint set (3) ensures that only one
job can be processed on any machine at any time interval. Constraint set (4) ensures
that, at any time interval, the total resource consumption of jobs cannot exceed the
available resource size, R. Finally, all xijt decision variables are binary as stated in (5).

In the formulation (1)-(5), constraint set (4) complicates the entire problem and
removing it converts the problem to an easier one. Therefore, constraint set (4) is
dualized so that the associated LRP can be solved more easily:

(LRP) Minimize []     = =
−+

=== = = −+ n

i

m

j

pt

ts ijsi

T

t t

n

i

m

j

T

pt ijt
ij

ij
Rxresxt

1 1

1

11 1
 λ

s.t. (2), (3) and (5)

(6)

In (6),][tλλ = is the set of nonnegative Lagrangian multipliers for constraint set

(4) which determine the tightness of the lower bound. In the proposed approach, a
subgradient optimization procedure is applied to maximize the lower bound.

3 Lagrangian-Based Constraint Programming Approach

In the proposed approach, while solving a series of LRPs to maximize the lower
bound, a CP model is applied to each infeasible solution of LRP to create feasible
schedules with efficient upper bounds. The infeasibility of the solutions will be due to
violating the resource capacity constraints (4) which are relaxed in the LRP. The CP
scheduling model takes the job-machine assignment (machinei) and processing time
(durationi) information from the LRP. The CP scheduling model is developed in OPL
6.3TM [19] using its special framework designed for solving scheduling problems:

)(Minimize
1 =

n

i ijobendof (7)

s.t. noOverlap(jobi|machinei=j) j = 1,…,m (8)

  = ≤n

i ii Rresjobpulse
1

),(
(9)

In formulation (7)-(9), jobi is defined as an interval variable whose position in time
is unknown to the scheduling problem. The objective function (7) aims to minimize
the total completion time of jobs. Constraint set (8) ensures that the jobs on each
machine do not overlap. Here, noOverlap is an OPL scheduling constraint used to
prevent intervals in a sequence from overlapping. Constraint (9) states that total
amount of additional resource consumed at each time should not exceed the available
amount, R. Pulse is an elementary cumulative function which covers the usage of a
cumulative or renewable resource when an activity increases the resource usage at its
start and decreases usage when it releases the resource at its end time. [19]

 Parallel Machine Scheduling with Additional Resources 95

On the other hand, a pure CP model is also developed with two reasons. Firstly, the
subgradient procedure requires an initial upper bound which can easily be obtained by
a pure CP model. Secondly, we want to see the performance of a pure CP model for
the original problem. This CP model is also developed in OPL 6.3:

 = =
n

i

m

j ijactendof
1 1

)(Minimize (10)

s.t. alternative(jobi, allj actij) i = 1,…,n (11)

 noOverlap(alli actij) j = 1,…,m (12)

 = ≤n

i ii Rresjobpulse
1

),((13)

The formulation (10)-(13) includes additional optional interval variables [20] actij
that can be left unperformed to handle the allocation of jobs to machines. The
objective function (10) aims to minimize the total completion time of jobs. Constraint
set (11) ensures that each job should be processed on exactly one of the parallel
machines. Constraint sets (12) and (13) are similar to constraint sets (8) and (9).

The objective value of the first feasible solution (i.e., z0) obtained from the pure CP
model of (10)-(13) is used as an initial upper bound (UB0) of the subgradient
optimization procedure. In addition, LRP and IP models require a feasible period
length, T, which is also obtained from the first solution of the pure CP model (i.e., T0).
The details of the subgradient optimization procedure are given below.

1. Set the initial values: T = T0; 01 =tλ for all t; r = 1; 00 =LB ; .00 zUB =

2. Solve LRP with r
tλ . Let ZD(rλ) be the optimal objective function value of LRP.

3. Update the lower bound:)}(,{max 1 r
D

rr ZLBLB λ−= .

4. If LRP generates a feasible solution, stop. Otherwise, generate a feasible solution

with objective function value)(rxz by using the proposed CP scheduling model.

5. Update the upper bound:)}(,min{ 1 rrr xzUBUB −=

6. If <−)(rr LBUB ε , STOP. Otherwise, go to Step 7.

7. Calculate the subgradients   = =
−+

= −= n

i

m

j

pt

ts ijsi
r
t

ij RxresG
1 1

1
; t= 1, …, T;

8. Determine the step size :
2

1t
)/( =−= T r

t
rrrr GLBUBT π

9. Update tλ using: } ,0max{1 r
t

rr
t

r
t GT+=+ λλ t= 1, …, T

10. Set the iteration number (r = r + 1), and go to Step 2.

After a preliminary computational test, it was found that the best convergence is

obtained by setting 21 =π . If rLB does not improve during five consecutive

iterations, rπ is divided by two. In Step 6, if (rr LBUB −) becomes less than ε = 1,

the procedure is terminated, otherwise, it terminates when .005.0≤rπ

96 E.B. Edis and C. Oguz

4 Computational Results and Conclusion

In the computational study, two sets of instances containing 15 and 30 jobs with five
machines were considered. Processing time, pij, and the resource requirements, resi,
were drawn from uniform distributions of integers between [10,20] and [0,5],
respectively. The resource size, R, was taken as 8, 10 and 12. For each combination of
these levels, five test problems were solved. For all solution methods, run-time limits
of 300 and 600 seconds were set for 15-job and 30-job test problems, respectively. In
addition, one-second run-time limit was set for CP scheduling model (7)-(9) which
produces very quick and efficient feasible results. The LBCPA was coded in IBM
ILOG OPL 6.3 [19] by using its scripting language. OPL 6.3 uses ILOG CPLEX 12.1
[21] for solving IP models and ILOG CP Optimizer 2.3 [19] for solving CP models.
All problems were run on a Core 2 Duo 2.2 GHz, 2 GB RAM computer. To compare
the performance of the proposed approach, the results of the pure IP and pure CP
models were also obtained. Table 1 presents the summary of computational results.
The gap percent values of all solution methods were calculated based on the lower
bounds derived by the IP model (i.e., the best lower bounds found by CPLEX 12.1).

For all test problems, increasing R makes the problem easier to be solved by the IP
model. Among three methods, the pure CP model gives the worst performance for all
experimental points in terms of the average gap percent since it tries to make machine
assignment and scheduling decisions together. LBCPA, on the other hand, takes job-
machine assignment from LRP and obtains the sequence from CP; hence, it performs
better than the pure CP model. Furthermore, LBCPA outperforms the IP model when
the problem is stricter (e.g., the problems with smaller R). In all problems with R = 8,
LBCPA performs better than the IP model. For 30-job test problems, LBCPA results
in 2.28% gap, while the IP model gives 3.00% in average. Consequently, LBCPA
gives efficient results in larger problems with restricted size of additional resource.

Table 1. Summary of Computational Results

Parameters Pure IP Model Pure CP Model Lagrangian-based CP Approach (LBCPA)

n m R
Avg.

T
Avg.
LB

Avg.
UB

Avg.
CPU
Time
(sec.)

Avg. Gap
% (# of

opt.)

Avg.
UB

Avg.
Gap %

(# of
opt.)

 Avg.
z0

Avg.
Lagr.

LB

Avg.
UB

Avg.
of
Iter.

Avg.
CPU
Time
(sec.)

Avg.
Gap %

(# of
opt.)

15 5

8 96.6 446.2 450.2 73.41+ 0.76 (3) 451.2 1.07 (1) 578.4 429.9 449.2 116.4 199.07 0.57 (3)

10 71.0 393.5 396.0 25.79+ 0.56 (3) 401.2 1.92 (0) 490.4 384.1 397.8 112.0 174.31 1.00 (1)

12 65.4 365.6 365.6 15.66 0.00 (5) 371.8 1.69 (0) 465.4 359.4 366.6 80.0 128.02 0.28 (3)

Average (15 jobs) 401.8 403.9 38.29+ 0.44 (11) 408.07 1.56 (1) 511.4 391.1 404.5 102.8 167.13 0.62 (7)

30 5

8 165.6 1412.4 1493.4 * 5.40 (0) 1483.6 5.01 (0) 2003.6 1398.2 1463.4 91.4 534.93+ 3.42 (0)

10 126.2 1260.4 1287.2 * 2.06 (0) 1315.8 4.30 (0) 1708.2 1253.5 1288.0 106.0 * 2.12 (0)

12 109.6 1193.8 1213.8 29.01+ 1.54 (2) 1239.4 3.72 (0) 1542.4 1190.1 1210.6 87.8 330.23+ 1.31 (1)

Average (30 jobs) 1288.9 1331.5 29.01+ 3.00 (2) 1346.2 4.35 (0) 1751.4 1280.6 1320.7 95.1 412.11+ 2.28 (1)

* Specified run-time limits are exceeded for all five test instances in the group.
+ Average CPU times are computed for only instances which the corresponding solver does not time out.

For the future study, the lower bounds produced by the subgradient optimization
procedure of the LBCPA and time efficiency of LRPs should be improved.

 Parallel Machine Scheduling with Additional Resources 97

Acknowledgements. This study is partially supported by a post-doctoral research
grant from TÜBİTAK (Scientific and Technological Research Council of Turkey).

References

1. Blazewicz, J., Ecker, K.: A linear time algorithm for restricted bin packing and scheduling
problems. Operations Research Letters 2(2), 80–83 (1983)

2. Blazewicz, J., Kubiak, W., Röck, H., Szwarcfiter, J.: Minimizing mean flow time with
parallel processors and resource constraints. Acta Informatica 24, 513–524 (1987)

3. Ventura, J.A., Kim, D.: Parallel machine scheduling about an unrestricted due date and
additional resource constraints. IIE Transactions 32, 147–153 (2000)

4. Kellerer, H., Strusevisch, V.A.: Scheduling parallel dedicated machines under a single
non-shared resource. European Journal of Operational Research 147, 345–364 (2003)

5. Kellerer, H., Strusevisch, V.A.: Scheduling problems for parallel dedicated machines
under multiple resource constraints. Discrete Applied Mathematics 133, 45–68 (2004)

6. Kovalyov, M.Y., Shafransky, Y.M.: Uniform machine scheduling of unit-time jobs subject
to resource constraints. Discrete Applied Mathematics 84, 253–257 (1998)

7. Ventura, J.A., Kim, D.: Parallel machine scheduling with earliness-tardiness penalties and
additional resource constraints. Computers and Operations Research 30, 1945–1958 (2003)

8. Edis, E.B., Araz, C., Ozkarahan, I.: Lagrangian-based solution approaches for a resource-
constrained parallel machine scheduling problem with machine eligibility restrictions. In:
Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI),
vol. 5027, pp. 337–346. Springer, Heidelberg (2008)

9. Blazewicz, J., Kubiak, W., Martello, S.: Algorithms for minimizing maximum lateness
with unit length tasks and resource constraints. Discrete Applied Mathematics 42, 123–138
(1993)

10. Kellerer, H., Strusevisch, V.A.: Scheduling parallel dedicated machines with the speeding-
up resource. Naval Research Logistics 55(5), 377–389 (2008)

11. Li, Y., Wang, F., Lim, A.: Resource constraints machine scheduling: A genetic algorithm
approach. In: 2003 Congress on Evolutionary Computation, vol. 1-4, pp. 1080–1085
(2003)

12. Sellmann, M., Fahle, T.: Constraint Programming Based Lagrangian Relaxation for the
Automatic Recording Problem. Annals of Operations Research 118, 17–33 (2003)

13. Darbi-Dowman, K.D., Little, J., Mitra, G., Zaffalon, M.: Constraint logic programming
and integer programming approaches and their collaboration in solving an assignment
scheduling problem. Constraints 1, 245–264 (1997)

14. Smith, B.M., Brailsford, S.C., Hubbard, P.M., Williams, H.P.: The progressive party
problem: integer linear programming and constraint programming compared.
Constraints 1, 119–138 (1997)

15. Darbi-Dowman, K.D., Little, J.: Properties of some combinatorial optimization
problems and their effect on the performance of integer programming and constraint
logic programming. Informs Journal on Computing 10(3), 276–286 (1998)

16. Lustig, I.J., Puget, J.F.: Program does not equal program: Constraint programming and its
relationship to mathematical programming. Interfaces 31(6), 29–53 (2001)

17. Edis, E.B., Ozkarahan, I.: A combined integer/constraint programming approach to a
resource-constrained parallel machine scheduling problem with machine eligibility
restrictions. Engineering Optimization 43(2), 135–157 (2011)

98 E.B. Edis and C. Oguz

18. Hooker, J.N.: Planning and scheduling to minimize tardiness. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 314–327. Springer, Heidelberg (2005)

19. IBM, ILOG OPL IDE 6.3., User’s Manual, IBM Corp. (2009)
20. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Proceedings of the

Twenty-First International FLAIRS Conference, pp. 555–560 (2008)
21. IBM, ILOG CPLEX 12.1., User’s Manual, IBM Corp. (2009)

Branch-Cut-and-Propagate for the Maximum
k-Colorable Subgraph Problem with Symmetry

Tim Januschowski1,� and Marc E. Pfetsch2

1 Cork Constraint Computation Centre
Computer Science Department, University College Cork, Ireland

janus@cs.ucc.ie
2 Institute for Mathematical Optimization, TU Braunschweig

Pockelsstr. 14, 38106 Braunschweig, Germany
m.pfetsch@tu-bs.de

Abstract. Given an undirected graph and a positive integer k, the max-
imum k-colorable subgraph problem consists of selecting a k-colorable
induced subgraph of maximum cardinality. The natural integer program-
ming formulation for this problem exhibits two kinds of symmetry: arbi-
trarily permuting the color classes and/or applying a non-trivial graph
automorphism gives equivalent solutions. It is well known that such sym-
metries have negative effects on the performance of constraint/integer
programming solvers.

We investigate the integration of a branch-and-cut algorithm for
solving the maximum k-colorable subgraph problem with constraint prop-
agation techniques to handle the symmetry arising from the graph. The
latter symmetry is handled by (non-linear) lexicographic ordering con-
straints and linearizations thereof. In experiments, we evaluate the
influence of several components of our algorithm on the performance,
including the different symmetry handling methods. We show that sev-
eral components are crucial for an efficient algorithm; in particular, the
handling of graph symmetries yields a significant performance speed-up.

1 Introduction

Symmetry in integer programs (IPs) and constraint programs (CPs) has been
recognized to harm the performance of solution algorithms for a long time. One
reason for this unfavorable effect is that symmetric solutions appear repeatedly
in the search tree, without giving new information about optimal solutions. Fur-
thermore, in the IP-setting, symmetries usually lead to weak bounds of the linear
programming relaxation. In recent years, several (successful) methods to handle
symmetry have been developed, see Margot [31] for an overview.

A particular problem in which symmetry arises is the maximum k-colorable
subgraph problem, which is defined as follows: Given an undirected graph and a
positive integer k, find a largest (induced) subgraph that can be colored with k
colors, i.e., we can assign one of at most k colors to each node in the subgraph,
� Tim Januschowski is supported by an Embark Scholarship of the Irish Research

Council for Science, Engineering and Technology.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 99–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

100 T. Januschowski and M.E. Pfetsch

such that two adjacent nodes do not receive the same color. Any k-colored sub-
graph can be transformed into another, equivalent k-colored subgraph by arbi-
trarily permuting the color classes or by applying a graph automorphism. This
gives rise to color and graph symmetry in a natural IP-formulation of the max-
imum k-colorable subgraph problem.

One way to tackle symmetry is a polyhedral approach. For instance, so-called
orbitopes can be used to handle the symmetry arising from permuting the color
classes. These polytopes where introduced in [22]. In particular, a complete de-
scription via shifted column inequalities (SCIs) was given, and an efficient sepa-
ration algorithm for SCIs was developed. A fast algorithm to perform constraint
propagation on orbitope structures was investigated in [21]. We will skip details
on these techniques, because they are not of central importance for this paper.
They will, however, be used in the computational experiments and are crucial
for fast algorithms.

The symmetry arising from automorphisms of the graph, however, has not yet
been treated from a polyhedral viewpoint. In this paper, we investigate methods
based both on constraint propagation and linear inequalities to handle such
symmetry, together with the orbitope approach for color symmetries. To the best
of our knowledge, no previous work on combining polyhedral symmetry handling
techniques from IP with CP symmetry handling approaches has appeared in the
literature. We use the maximum k-colorable subgraph problem as a prototype
application for this investigation. This line of research has been started in [18],
where we investigate the interaction of the problem-specific polyhedral structure
of the maximum k-colorable subgraph problem with orbitopes.

After discussing related work and giving basic definitions, we investigate a
symmetry handling approach based on a lexicographic ordering constraint in Sec-
tion 2.1. For special structures of the automorphism group, one can strengthen
the original constraint, for instance if a transposition is part of the automor-
phism or a symmetric group is acting on a subgraph. In Section 2.2, we study
domain propagation of so-called structural symmetry breaking constraints to
handle symmetries that arise from a combination of graph and color symme-
tries. Section 3 describes components of a branch-cut-and-propagate algorithm
to solve the maximum k-colorable subgraph problem, i.e., we combine a branch-
and-cut with a constraint programming algorithm to solve a constraint integer
program, see [4,6]. In Section 4, we report on computational experiments, which
show the effectiveness of this approach. For example, we show that the usage of
symmetric subgroups of the automorphism group lead to a significant improve-
ment of the algorithm performance.

1.1 Related Work

Margot [31] gives an excellent overview of symmetry handling methods in IP
and CP. We thus keep this section brief and only highlight some related work.

The handling of symmetries has been extensively discussed in the CP liter-
ature. Puget [38] first introduced a symmetry breaking constraint, and Craw-
ford et al. [9] propose general symmetry breaking constraints. The addition of

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 101

constraints for the handling of row and column symmetry has received consid-
erable attention, see, e.g., [10,13,23]. Gent et al. [16] present an overview.

In integer programming, the handling of symmetries by adding constraints
was proposed by Méndez-Díaz and Zabala [33] for the graph coloring problem.
General IP-methods to handle symmetries via pruning in the search tree have
been developed by Margot [28,29,30] and Ostrowski et al. [37,26].

The maximum k-colorable subgraph problem appears to have rarely been
studied in the literature, supposedly, because it is closely connected to both the
more prominent graph coloring problem and the stable set problem. See [18] for
more details as well as a list of applications and relevant IP-techniques for the
maximum k-colorable subgraph problem.

1.2 Basic Notation and Definitions

We use the following notation throughout the article.
For an integer n ≥ 1, let [n] := {1, 2, . . . , n}. For x ∈ IR[n]×[k] and S ⊆ [n]×[k],

we write x(S) :=
∑

(i,j)∈S xij . We use rowi for the set {(i, 1), (i, 2), . . . , (i, k)}
and colj for the set {(1, j), (2, j), . . . , (n, j)}. By rowi(x) we denote the ith row
of x and colj(x) denotes the jth column of x. By 0 we denote a zero-matrix of
appropriate dimensions.

Any permutation of a finite set can be written using disjoint cycles. A cycle
(a1a2 . . . ak) refers to the mapping a1 �→ a2 �→ . . . �→ ak �→ a1; k is the length of
the cycle, and a cycle of length k is called a k-cycle. A 2-cycle is a transposition.

Let G = (V, E) be a simple undirected graph with node set V and edge set E,
where n := |V |. We will often need an order of the nodes in V and thus assume
that V := {1, . . . , n}; in particular, we can directly compare nodes, e.g., u < v
for u, v ∈ V . We denote by G[V ′] the subgraph induced by V ′ ⊆ V . Thus, the
set of edges of G[V ′] is {e ∈ E : e ⊆ V ′}. For a node v, the neighborhood Γ (v)
of node v contains all nodes adjacent to v, i.e.,

Γ (v) := {u ∈ V : {u, v} ∈ E}.
The closed neighborhood of v is Γ (v) := Γ (v) ∪ {v}. The degree of v is defined
as δ(v) := |Γ (v)|. A clique is a set of nodes C �= ∅, such that for all u, v ∈ C,
u �= v, we have {u, v} ∈ E. A stable set is a set of nodes S �= ∅ such that for all
u, v ∈ S, we have {u, v} /∈ E.

For a positive integer k, G is k-colorable if we can assign to each node in G a
color (number) in [k] such that adjacent nodes do not have the same color.

Definition 1. For a positive integer k and a graph G, the maximum k-colorable
subgraph problem consists of finding a set V ′ ⊆ V such that G[V ′] is k-colorable
and V ′ has maximum cardinality.

The maximum k-colorable subgraph problem is NP-hard and hard to approxi-
mate, see [18] for a detailed discussion.

Note that the restriction to simple graphs for the maximum k-colorable sub-
graph problem is without loss of generality: parallel edges can be replaced by a
single edge, and nodes with loops will never be part of V ′.

102 T. Januschowski and M.E. Pfetsch

We consider the following IP-formulation for the maximum k-colorable sub-
graph problem.

(IPk(G)) max
∑
v∈V

∑
j∈[k]

xvj (1)

xuj + xvj ≤ 1 ∀ {u, v} ∈ E, j ∈ [k] (2)
x(rowv) ≤ 1 ∀ v ∈ V (3)
xvj ∈ {0, 1} ∀ v ∈ V, j ∈ [k]. (4)

Let x be a solution of (2)–(4). Because of the packing inequalities (3), x(rowv)
is 1 if and only if node v is in the selected subgraph (i.e., colored). Thus, the
objective function represents the cardinality of the selected subgraph.

The k-colored subgraph polytope corresponding to the maximum k-colorable
subgraph problem is

Pk(G) := conv{x ∈ {0, 1}V×[k] : x satisfies (2) and (3)}.
A symmetry of an IP is a permutation of the variables that maps feasible

solutions to feasible solutions with the same objective function value. They are
variable solution symmetries in the sense of Cohen et al. [8]. The symmetries
of an IP form the symmetry group. The symmetry group partitions the feasible
solutions into disjoint orbits. We say that the addition of a set of constraints leads
to partial/complete symmetry handling with respect to the symmetry group if
for every orbit of solutions at least/exactly one solution is preserved.

The maximum k-colorable subgraph problem exhibits two basic types of sym-
metries: color and graph symmetries. In [18], we concentrated on handling color
symmetry polyhedrally via orbitopes. Color symmetries form a symmetric group
Sk of degree k that operates by permuting the columns of x in (IPk(G)). In this
paper, we concentrate on graph symmetry handling.

2 Graph Symmetry Handling

Each element of the automorphism group Aut(G) of the graph G yields a sym-
metry of (IPk(G)) by permuting the rows of x accordingly. Graph and color
symmetries differ in certain aspects as we discuss in the following.

First, unlike color symmetries, graph automorphisms may not yield symme-
tries in the weighted version of the maximum k-colorable subgraph problem,
where each node receives a weight and the goal is to maximize the sum of the
weights of the colored nodes. Recall that this article only considers the un-
weighted version.

Second, the color symmetries of (IPk(G)) are known (but could also be ef-
ficiently be computed, see [7]). In contrast, finding graph automorphisms (and
hence graph symmetries) is at least as hard as the graph isomorphism problem,
which has an open complexity status (see Garey and Johnson [15] and John-
son [20]). More precisely, the problem of detecting whether a graph admits a
non-trivial automorphism is graph-isomorphism complete.

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 103

Third, whereas color symmetries always form a symmetric group, any group
can be the automorphism group of a graph, see, e.g., Frucht [14].

2.1 Lexicographic Graph Symmetry Handling

Crawford et al. [9] propose constraints to handle general symmetries for Boolean
satisfiability problems that we can adapt for our purposes as follows. For every
symmetry φ ∈ Aut(G), we have the following lexicographic ordering constraint.

[row1(x), . . . , rown(x)] ≥lex [rowφ(1)(x), . . . , rowφ(n)(x)]. (5)

If we add (5) for all φ ∈ Aut(G), then the graph symmetries are completely
handled. In particular, the addition of (5) comes with the guarantee that from
every orbit of solutions, the lexicographically largest solution is preserved, see [9].
Note that in (5), it suffices to consider only nodes v for which φ(v) �= v.

Remark 1. When combining color and graph symmetry handling, one needs to
order the rows and the columns of x in the same lexicographic fashion (i.e., de-
creasingly or increasingly). Orbitope symmetry handling for the color symmetries
uses a lexicographically decreasing order on the columns. Hence, a lexicograph-
ically decreasing order on the rows should be used as well. Otherwise, one may
lose entire orbits of solutions, see Flener et al. [10].

Constraints (5) are non-linear. A standard linearization is:
∑
i∈[n]

∑
j∈[k]

2(n+1−i)k−j xij ≥
∑
i∈[n]

∑
j∈[k]

2(n+1−i)k−j xφ(i),j . (6)

Inequalities (6) have coefficients from 1 to 2nk−1. Even for small n and k, this
will cause severe numerical difficulties for IP-solvers [31].

We therefore do not use inequalities (6), but directly perform constraint prop-
agation on (5) as follows (see Frisch et al. [13] for domain filtering for (5) in a
pure CP context). Assume that xij becomes fixed during search for some i ∈ [n],
j ∈ [k]; the implications from fixings of xφ(i),j are similar. Further, assume that
xst and xφ(s),t are fixed for all s < i and all t ∈ [k], and that

[row1(x), . . . , rowi−1(x)] = [rowφ(1)(x), . . . , rowφ(i−1)(x)].

If xij is fixed to 1, this implies that xφ(i),� = 0 for � < j (otherwise Constraint (5)
would be violated). If xit is fixed to 0 for all t ∈ [j], then we can fix xφ(i),t = 0
for all t ∈ [j].

To provide further propagation steps, we need the following notation. We
denote by x̌ and x̂ the matrix where all unfixed variables in x are set to 0 and 1,
respectively. If rowi+1(x̂) <lex rowφ(i+1)(x̌), we derive stronger fixings. It follows
that rowi(x̃) >lex rowφ(i)(x̃) must hold for every feasible solution x̃ compatible
with the fixings, otherwise Constraint (5) is violated. If xij is fixed to 1, then we
may, additionally to the above fixings, fix xφ(i),j to 0. If xit is fixed to 0 for all
t ∈ [j], then we may, additionally to the above fixings, fix xφ(i),j+1 to 0.

104 T. Januschowski and M.E. Pfetsch

If the automorphism group has a particular structure, this general approach
can be specialized. We discuss several examples in the following.

Graph Transpositions: One particularly simple kind of graph automorphisms
are transpositions, which frequently occur in the automorphism group of a
graph G. For a transposition φ = (u v) ∈ Aut(G) (we always assume u < v), we
can simplify (5) to:

rowu(x) ≥lex rowv(x), (7)

and we can simplify (6) to:
∑
j∈[k]

2k−jxuj ≥
∑
j∈[k]

2k−jxvj . (8)

This inequality can be strengthened by using the packing inequalities:
∑
�∈[j]

xu� ≥
∑
�∈[j]

xv�, ∀ j ∈ [k]. (9)

Constraints (8) and (9) are logically equivalent, because they exclude all but the
lexicographically largest solutions with respect to (u v). However, polyhedrally
speaking, Inequalities (9) dominate (8); they also avoid large coefficients.

Composition of Transpositions: Consider the case in which Aut(G) contains
a composition of (disjoint) transpositions

φ = (u1 u2)(u3 u4) . . . (u�−1 u�),

such that ui �= ui+1 for all i ∈ [� − 1].
In this case, we can strengthen the above mentioned general domain prop-

agation follows. We can assume w.l.o.g. that u1 = min{u1, u2, . . . , u�}. In case
{u1, u2} ∈ E, then xu2,1 = 0 must hold. For the sake of contradiction, assume
that there exists a feasible solution x̃ with x̃u2,1 = 1. It follows that x̃u1,1 = 0
due to {u1, u2} ∈ E. Then, however, x̃ violates (5); this proves the claim.

Symmetric Groups: In order to handle symmetric (sub)groups, we need the
following basic fact.

Lemma 1. Let (u v) ∈ Aut(G) with {u, v} ∈ E. Then, for any (v w) ∈ Aut(G),
we have {v, w} ∈ E.

Proof. By definition, Γ (u) = Γ (v) for (u v) ∈ Aut(G). Because (u w) =
(u v)(v w)(u v), it follows that Γ (w) = Γ (u). Since v ∈ Γ (u) = Γ (w), we
have {v, w} ∈ E. ��
It follows that a symmetric subgroup of the automorphism group either acts on
a stable set or on a clique. If it acts on a clique, we can use orbitopal fixing,
see [21], as an efficient domain filtering algorithm; in particular, for a symmetric
group acting on the clique C = {u1, u2, u3, . . . , uc}, we may fix xui,j = 0 for all
i = 2, . . . , c and j = 1, . . . , k(i − 1) due to the lexicographic ordering.

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 105

Lemma 2. Let a symmetric subgroup act on a stable set S. Then adding

xuj = xvj for all j ∈ [k], u, v ∈ S, (10)

to (IPk(G)) does not change the optimal value.

Proof. If no optimal solution colors a node in S, the claim holds trivially. Oth-
erwise, assume that there exists a solution x̃ with x̃uj = 1 for some u ∈ S and
j ∈ [k]. Consider any node v ∈ S \{u}. By assumption, we have (u v) ∈ Aut(G),
i.e., Γ (u) = Γ (v). Since x̃ is a valid coloring, there exists no w ∈ Γ (v) = Γ (u)
such that x̃wj = 1. Since by assumption {u, v} /∈ E, (re)coloring v with color j
yields a valid coloring. Since v was arbitrary, we conclude that any node in S
can be colored with the same color. Moreover, if x̃ was optimal the resulting
coloring is optimal and satisfies (10). ��

We note that the equations (10) do not conflict with Constraints (5) for optimal
solutions: Every solution that fulfills (10) has lexicographically ordered rows for
nodes in S and thus fulfills (5). Moreover, the proof of Lemma 2 shows that if
a solution fulfills (5) but not (10), the solution is either not optimal or can be
partially recolored such that it fulfills (10).

Arbitrary Groups: In the general case, we cannot exploit any particular struc-
ture of the automorphism group. In particular, since Aut(G) may become very
large, it is in general not efficient to consider (5) for all available automorphisms.
Thus, we only consider the generators of Aut(G) that nauty [32] outputs.

2.2 Combinations of Graph and Color Symmetry

So far, we have focused on the independent handling of graph and color sym-
metries: orbitopes handle the color symmetries completely, and (5) can handle
graph symmetries completely. As the following example shows, there may, how-
ever, be combinations of graph and color symmetries (product symmetries) that
are left unhandled, even if we restrict attention to transpositions (see also Flener
et al. [10]). In this section we deal with methods to handle product symmetries.

Example 1. Consider a graph with three isolated nodes {1, 2, 3}, k = 3, and the
two solutions [1, 0, 0; 0, 1, 0; 0, 1, 0] and [1, 0, 0; 1, 0, 0; 0, 1, 0] (with the obvious in-
terpretation as matrices). Both solutions have lexicographically ordered rows and
columns, but are symmetric via a combination of graph and color symmetries.

Note that the difference between the number of solutions in the case with and
without complete handling of product symmetries can be exponential in the size
of G, even if graph and color symmetries are handled completely, see [23].

Flener et al. [11] present constraints that provide complete symmetry handling
for product symmetries, where the graph automorphism group is a union of
symmetric groups. We need some notation in order to present this result. We
partition the set of nodes V into sets V1, . . . , Vs such that a symmetric

106 T. Januschowski and M.E. Pfetsch

subgroup Sp of Aut(G) acts on Vp for all p ∈ [s]. Let Vp = {vp
1 , . . . , vp

qp
} with

vp
1 < vp

2 < · · · < vp
qp

. We require the lexicographic ordering

rowvp
i
(x) ≥lex rowvp

i+1
(x), (11)

for all i ∈ [qp − 1] and all p ∈ [s]. We introduce frequency variables

fp
j :=

∑
v∈Vp

xvj ∈ Z+, j ∈ [k], p ∈ [s], (12)

determining the number of nodes in Vp colored with color j. Finally, we introduce
the constraints

(f1
j , f2

j , f3
j , . . . , fs

j) ≥lex (f1
j+1, f

2
j+1, f

3
j+1, . . . , f

s
j+1), j ∈ [k − 1]. (13)

We refer to Constraints (11) and (13) as structural symmetry breaking (SSB)
constraints. Note that variables fp

j are only used for ease of exposition; we do not
use them in our implementation. Flener et al. [11] proved that SSB constraints
completely handle all symmetries of (IPk(G)).

Unfortunately, SSB constraints do not necessarily imply a lexicographic or-
dering of the columns as one easily verifies. This impedes a combination of
orbitope symmetry handling with SSB constraints in the general case. However,
the following result shows how to relabel the nodes such that orbitope symmetry
handling and SSB constraints do not conflict.

Proposition 1. Let G be a graph such that a symmetric subgroup Sp of Aut(G)
acts on Vp for p = 1, . . . , s. Let the node labeling of G be such that

v1
1 < · · · < v1

q1
< v2

1 < · · · < v2
q2

< v3
1 < · · · < vs

1 < · · · < vs
qs

.

Then SSB constraints imply a lexicographically decreasing order on the columns.

Proof. For the sake of contradiction, assume the existence of a solution (x̃, f̃)
that fulfills (13) and has two columns j, j + 1 such that colj(x̃) <lex colj+1(x̃).
Let i be the smallest row index in which colj(x̃) and colj+1(x̃) differ and x̃ij = 0,
x̃i,j+1 = 1. Let node i be in partition Vp.

By assumption, x̃rj = x̃r,j+1 for r < i. Because of the packing inequalities, it
follows that x̃rj = x̃r,j+1 = 0. Thus, f̃ q

j = f̃ q
j+1 = 0 for all q ∈ [p − 1], due to the

node labeling.
Within partition Vp, we have x̃rj = 0 for all r ∈ Vp with r < i. Moreover,

node i is colored with color j + 1. Thus, x̃it = 0 for all t ∈ [j] by the packing
inequalities. Since the rows within a partition are lexicographically decreasingly
ordered, it follows that x̃rt = 0 for all r in Vp with r > i and all t ∈ [j]. Therefore,
we have shown that x̃vj = 0 for all v ∈ Vp. It follows that 0 = f̃p

j < f̃p
j+1 ≥ 1.

Thus, x̃ violates an SSB constraint. ��
The node labeling/order is important for the maximum k-colorable subgraph
problem and has a significant influence on the solving time. We shall verify

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 107

in experiments, whether the additional symmetry handling by SSB constraints
outweighs the effect of restricted node orderings.

We directly perform domain filtering for SSB constraints as follows (see Flener
et al. [11] for stronger domain filtering in a pure CP context). First, for Con-
straint (11), we use the already mentioned domain propagation of Constraint (5).
Second, we propagate Constraint (13) as follows.

Assume variable xij becomes fixed, with corresponding frequency variable fp
j .

Assume further that all variables xvj and xv,j+1 for all v ∈ Vq are fixed such
that f q

j = f q
j+1 for all q < p.

First, consider the case where all variables xv,j+1 with v ∈ Vp are fixed. Then
x(Vp × {j + 1}) = fp

j+1, and because of (13), it follows that x̃(Vp × {j}) ≥ fp
j+1

must hold for any feasible x̃ that is compatible with the fixings. Assume that
x̂(Vp×{j}) = � < fp

j+1 (see Section 2.1 for a definition of x̂). If there are (fp
j+1−�)

unfixed variables with indices in Vp × {j}, we can fix all of them to 1. If there
are strictly fewer, the constraint is violated; if there are more, we do nothing.

Moreover, consider the case where x̂(Vp+1 × {j}) < x̌(Vp+1 × {j + 1}), then
fp

j > fp
j+1 must hold for all solutions compatible with the fixings. If there are

(fp
j+1 − � + 1) unfixed variables with indices in Vp × {j}, we can fix all of them

to 1. If there are strictly fewer, the constraint is violated; if there are more, we
do nothing. We can deduce similar domain filterings for variables in Vp ×{j−1}
based on the fixing of xij .

3 A Branch-Cut-and-Propagate Algorithm

In this section, we describe the main components of a branch-cut-and-propagate
algorithm for the maximum k-colorable subgraph problem: preprocessing, node
labeling heuristics, branching rules, (valid) inequalities, and node domination in-
equalities. Additionally, we use the constraints for graph symmetries as described
in Section 2 and conflict analysis, see Achterberg [3,4]. We assume familiarity
with the branch-and-cut approach, see, e.g., Nemhauser and Wolsey [36] for
background.

At several places, we use tclique, a specialized branch-and-bound method
for the maximum weighted clique problem, which is available in scip [39]. By
working on the complement graph, tclique can solve the maximum weighted
stable set problem as well.

3.1 Preprocessing

Preprocessing tries to reduce the size of the graph, before the main optimization
is performed. For the maximum k-colorable subgraph problem, we can remove
nodes with low degree as follows. If a node v with δ(v) < k exists, we can always
color this node with a color that is not used by its neighbors. Hence, we can
delete this node from graph G and adapt the objective function.

108 T. Januschowski and M.E. Pfetsch

3.2 Node Labeling Heuristics

Before setting up formulation (IPk(G)), one can reorder (relabel) the nodes,
which has a big impact on the performance of solution algorithms. We investigate
the following node labelings:

◦ Sort nodes w.r.t. increasing/decreasing node-degree.
◦ Choose a large clique as the first nodes in the order and then sort w.r.t.

increasing/decreasing node-degree.
◦ Sort the nodes such that nodes in the same symmetric group have consecutive

node labels (see Proposition 1).
◦ Sort the nodes randomly.

3.3 Branching Rules

One possibility is to branch on nodes as done in [34], i.e., we choose a node in
the graph and generate a branch for each color which is still available.

◦ Uncolored node branching: choose a node with highest number of non-available
colors. Ties are broken according to the degree of the nodes in the uncolored
subgraph, i.e., the number of neighbors whose color is not fixed.

◦ Uncolored Sewell’s rule: choose a node as above. Ties are broken according to
the rule of Sewell [40]: The node whose coloring induces the smallest number
of colorings for its neighborhood is selected.

As an alternative, we branch on the first fractional variable in the row-wise
ordering (first index branching), see [21]. In the truncated first index branching
variant, we branch on the first fractional variable xij for which the current LP-
solution has no 1 in positions (j, j), . . . , (i − 1, j). If no such variable has been
found, we use the standard (strong-)branching rule of scip, see [5]. These two
variable branching rules try to support the lexicographic ordering of the columns.

3.4 Valid Inequalities

In order to generate additional cutting planes, we implemented the following
separation algorithms.

◦ Let S be a set of nodes in G, and let α(S) be the maximum size of a stable
set in G[S]. Then, the inequality

∑
v∈S

xvj ≤ α(S) (14)

is a valid inequality for Pk(G) for all j ∈ [k]. We use a heuristic algorithm to
separate (14) with small S. If S is a clique, (14) are called clique inequalities ;
we use tclique to separate clique inequalities. If C is an odd cycle in G, then
we refer to (14) as an odd cycle inequality. We separate odd cycle inequalities
with an algorithm due to Grötschel et al. [17].

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 109

◦ The neighborhood inequality for a node v is given by
∑

u∈Γ (v)

xuj + rxvj ≤ r ∀ j ∈ [k],

where r = α(Γ (v)), see [34,35]; r is computed via tclique. These inequalities
are added to IPk(G) from the start.

◦ Shifted Column Inequalities (SCIs) for orbitopes are separated with the linear-
time separation algorithm described in [22].

◦ Clique Shifted Column Inequalities, see [18,22], and Packing-Clique Inequali-
ties, see [18], are separated heuristically.

3.5 Dominated Nodes

Additional inequalities can be added at the start by considering dominated
nodes. A node v dominates another node u if Γ (v) ⊇ Γ (u). We say that v
strictly dominates u if Γ (v) \ {u} � Γ (u) \ {v}. Dominated nodes appear in the
context of the stable set problem, see, e.g., [12], or the graph coloring problem,
see, e.g., [27]. In fact, in graph coloring, we can remove dominated nodes from
the graph if {u, v} /∈ E, because they can always be colored with the same color
as the dominating nodes. In the maximum k-colorable subgraph problem one
can show that this is not the case (see [19] for an example). We can, however,
generate inequalities based on the following result.

Theorem 1. Let u, v ∈ V , u �= v, be a pair of nodes with Γ (v) ⊇ Γ (u).
1. If {u, v} ∈ E, then adding the following inequality does not change the optimal

value of (IPk(G)): ∑
j∈[k]

xvj ≤
∑
j∈[k]

xuj . (15)

2. If {u, v} /∈ E, then adding the following inequalities does not change the
optimal value of (IPk(G)):

xvj ≤ xuj ∀ j ∈ [k]. (16)

We refer to [19] for a proof. The basic ideas are as follows. In the first case, for
any optimal solution coloring v, there exists an optimal solution that colors u.
In the second case, for any optimal solution that colors v, there exists an opti-
mal solution such that u receives the same color as v. Note that both kinds of
inequalities may cut off feasible/optimal solutions.

If node u dominates v and v dominates u, this induces a graph transposition
(u v) ∈ Aut(G). For graph transpositions, we have already provided stronger
inequalities: Inequalities (9) for {u, v} ∈ E and Equation (10) for {u, v} /∈ E. In
particular, we can add (9) and (10) for all such pairs u, v with u < v.

Avoiding Conflicts between Constraints: Adding Inequalities (15) for all
pairs of (strictly) dominated/dominating nodes may cut off all optimal solutions.

110 T. Januschowski and M.E. Pfetsch

v

w

u

Fig. 1. Left: All pairs of nodes u, v dominate each other, i.e., Γ (v) ⊇ Γ (u). Right:
Node u is dominated by nodes v and w. For k = 2, an optimal 2-colored subgraph is
depicted in gray and black. It contains u, v, and w. However, we cannot color node u
with the same color as v and w.

The left-hand side of Figure 1 shows an example: If k = 2, including (15) for all
pairs cuts off all optimal solutions. Similarly, we cannot add all Inequalities (16),
see the right-hand side of Figure 1.

In order to avoid these difficulties, we construct a directed graph D. For every
pair of nodes u, v, such that v strictly dominates u, we add a directed edge
(v, u). We obtain the following result (a proof can be found in [19]).

Lemma 3. Let A be a subset of arcs of D such that A is a branching, i.e., A is
acyclic and the in-degree of every node is at most one. Then at least one optimal
solution remains when adding (15) and (16) for all arcs in A.

Similarly, a naïve combination of constraints for graph transposition or domi-
nated neighborhood inequalities may remove all optimal solutions in (IPk(G)).
Using an analogous construction as above guarantees that at least one optimal
solution remains.

4 Computational Results

We implemented a branch-cut-and-propagate algorithm as described above in
C++ based on scip 2.0.0, see [4,39]. We use CPLEX 12.1 as the LP-solver. The
experiments were run on a linux cluster, in which each node has 8 Intel Xeon
CPUs with 2.66GHz; we only use four CPUs per node to avoid timing issues.

To obtain a test set, we selected graphs from the Color02 symposium [2] and
the clique part of the Second DIMACS Implementation Challenge [1] bench-
marks; we add the complement of some of the clique graphs. Finally, we included
instances for the wave length assignment problem, see [24,25]; only instances
for which the chromatic number is strictly greater than 20 were considered for
k = 20. In total, we selected 74 combinations of graphs and numbers of colors;
see Table 1 for the Color02 and DIMACS graphs (see [19] for more details on the
benchmark). The instances were chosen such that our default version (described
below) can prove optimality of each instance within about one hour.

In our experiments, we use a time-limit of two hours. We initialize the al-
gorithm with an optimal solution in order to minimize the effect of heuristics.
Table 2 sums up the experiments. We report the number of instances that could

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 111

Table 1. Partial list of benchmark instances. On the left part are Color02 instances; on
the top right DIMACS clique instances, and on the bottom right complement graphs
of DIMACS clique instances.

Name k1 k2 k3 k4

1-FullIns_4 3
1-Insertions_4 3
2-FullIns_4 3
3-FullIns_4 5 6
4-FullIns_3 3
4-FullIns_4 5 6 7
5-FullIns_3 3
5-FullIns_4 5 6 7 8
DSJC125.9 4 5 6
DSJC250.9 3 4
DSJR500.1c 3 4 5
DSJR500.1 8 9 10 11
myciel5 4 5
myciel6 3
queen6_6 6

Name k1 k2 k3 k4 k5 k6

san200_0.9_1 4
c-fat500-2 15 17 20 22 25
c-fat500-10 10 15 17 20 22 25
gen200_p0.9_55 4
c-fat200-1 10
gen200_p0.9_44 4
sanr200_0.9 4
san200_0.9_2 4
MANN_a27 15 17 20 22 25

johnson8-4-4c 4
c-fat500-1c 4 5 6 6
c-fat200-2c 7 8
c-fat200-1c 6 7 8 9
hamming6-4c 4 5

not be solved within two hours (column ‘>2h’), and we report the shifted geo-
metric mean1 of the number of nodes in the search tree as well as the shifted
geometric mean of the CPU time in seconds (columns ‘nodes’ and ‘time’, respec-
tively). If an instance times out, its running time is evaluated as 2h, and we use
the number of nodes produced within 2h for the computation of the geometric
means.

Our default settings are as follows:

Preprocessing: Remove nodes with low degree smaller than k.
Node labeling: Choose a clique as the first nodes in the labeling, then label

nodes with decreasing degree.
Cutting Planes: Neighborhood inequalities are added to IPk(G), stable set

inequalities (14) are separated heuristically in the root node, and clique
inequalities are separated at every fifth depth of the tree.

Symmetry Handling: Use orbitopal fixing for color symmetries.
Branching Rule: Use the uncolored Sewell’s rule.

We separate cutting planes other than clique inequalities only at the root node;
this seems to be generally superior for our test set. In the following experiments,
we add/remove features to the default settings in order to asses the importance
of the features on the overall performance.

1 The shifted geometric mean of values t1, . . . , tn is defined as
(∏

(ti + s)
)1/n − s with

shift s. We use a shift s = 10 for time and s = 100 for nodes in order to decrease
the strong influence of the very easy instances in the mean values.

112 T. Januschowski and M.E. Pfetsch

Table 2. Summary of experiments

Variant >2h nodes time

default 0 251.0 104.7

OFSCI 1 275.4 127.7
noOFSCI 2 329.3 111.2
noOFnoSCI 16 1462.5 449.5
CliqueSCI 9 284.2 238.8
PackingClique 0 275.3 117.7

IncDeg 19 1246.0 480.9
DecDeg 20 1526.7 431.2
CliqueIncDeg 2 378.7 135.7
SymGOrder 14 848.2 312.5
Random 17 1269.7 445.3

Variant >2h nodes time

firstIndex 1 288.5 126.2
TruncFirstIndex 0 192.0 108.8
UCVertex 0 268.1 109.4

OddCycle 0 296.9 145.3

DomNode 1 292.2 112.9
DomNodeGS 0 245.1 85.7
GS 0 249.1 84.0
GGen 0 218.0 86.9
GSSymGOrder 14 832.5 273.8
GGenSymGOrder 13 748.1 267.4
SSB 13 869.9 270.2
GGenSSB 13 808.5 274.6

Experiment 1: Color Symmetry Handling. In the first experiment, we eval-
uate the effect of different degrees of color symmetry handling: separating SCIs
with/without orbitopal fixing (OFSCI/noOFSCI in Table 2), no color symmetry
handling (noOFnoSCI), additionally separating clique shifted column inequali-
ties (CliqueSCI), and packing-clique inequalities (PackingClique). The default is
to not separate SCIs, but perform orbitopal fixing.

Any form of color symmetry handling clearly outperforms the variant without
color symmetry handling. The default settings are the fastest. Orbitopal fixing as
a pure constraint propagation algorithm outperforms the variants that separate
shifted column inequalities (the same is observed in [21]), which can be explained
by the fact that separating SCIs seems to yield more difficult LPs. The strength-
ened inequalities (PackingClique/CliqueSCI) do not yield an improvement over
the default or variant ‘noOFSCI’.

Experiment 2: Node Labelings. Here we investigate the effect of the node
labelings on the performance. Our results clearly indicate their high impact. The
default settings are the best choice. The other variants increasing/decreasing
degree (IncDeg/DecDeg), keep symmetry groups together (SymGOrder), and
random ordering (Random) all perform much worse. Note that sorting a clique
to the front, as done in the default settings, has a high positive impact.

Experiment 3: Branching Rules. We compare the two vertex based branch-
ing rules ‘uncolored vertex’ (UCVertex) and ‘uncolored Sewell’ (default) with
the variable branching rules ‘first index’ (FirstIndex) and ‘truncated first index’
(TruncFirstIndex). Here, ‘first index’ has the worst performance, while the other
variants are not far apart w.r.t. their running time. The variant ‘truncated first
index’ produces the fewest number of nodes in the tree, but is not the fastest,
probably because of the time used for strong-branching.

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 113

Experiment 4: Cutting Planes. In this experiment, we compare separat-
ing clique inequalities (default) with the additional separation of odd cycle
inequalities at the root node (OddCycle). Clearly, separating odd cycle inequal-
ities does not yield an improvement to the default settings.

Experiment 5: Graph Symmetry Handling. In the final experiment, we
compare different forms of graph symmetry handling and dominated node in-
equalities. We evaluate handling dominated nodes (DomNodes), symmetric sub-
groups of the graph symmetry group (GS), their combination (DomNodeGS),
generator symmetry (GGen) which subsume ‘GS’, symmetric subgroups with
SSB Constraints (SSB), and combining generator symmetry with SSB Con-
straints (GGenSSB). Whenever we use SSB constraints, we use the node label-
ing ‘SymGOrder’ in order to be able to combine SSB Constraints with orbitopal
fixing. We further present the results for GS and GGen w.r.t. the labeling ‘Sym-
GOrder’ (GSSymGOrder/GGenSymGOrder).

Handling dominated nodes deteriorates the performance of the default set-
tings; however, handling symmetric subgroups additionally yields an improve-
ment on the default version. The overall best settings are obtained by handling
symmetric subgroups only. The gain in time over the default version is approx-
imately 20% in running time. The strongest form of graph symmetry handling
(GGen) produces the least of amount of search nodes for the default branch-
ing rule; however, the running time is slightly worse than handling symmetric
subgroups only.

Any graph symmetry handling in combination with labeling ‘SymGOrder’
clearly outperforms the variant with labeling ‘SymGOrder’ without graph sym-
metry handling. However, the handling of additional product symmetries via
SSB constraints does not seem to have a positive impact on the solving time.
The difference in running time is fairly small for all graph symmetry handling
with labeling ‘SymGOrder’. Overall they are inferior to graph symmetry han-
dling with the default labeling, e.g., version ‘GS’ vs. ’GSSymGOrder’.

5 Conclusion and Future Work

The branch-cut-and-propagate algorithm that we presented in this paper
provides an efficient way to solve a symmetric formulation of the maximum
k-colorable subgraph problem. The performance of the algorithm can be sub-
stantially improved by handling symmetries via a combination of inequalities
and domain propagation. In particular, we have demonstrated that handling
graph symmetries in this way is very useful.

Future work will involve a more detailed computational analysis of the results
in this paper. Moreover, one could identify (strong) linearizations for lexico-
graphic ordering constraints for general graph symmetries and SSB constraints;
this would help to polyhedrally handle additional symmetries.

114 T. Januschowski and M.E. Pfetsch

References

1. Second DIMACS implementation challenge: Maximum clique, graph color-
ing, and satisfiability (1993), ftp://dimacs.rutgers.edu/pub/challenge/graph/
benchmarks/clique/

2. COLOR 2002 – computational symposium: Graph coloring and its generalizations
(2002), http://mat.gsia.cmu.edu/COLOR02

3. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Opti-
mization 4(1), 4–20 (2007)

4. Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1) (2009)

5. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N.
(eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009)

6. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer program-
ming: A new approach to integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR
2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)

7. Berthold, T., Pfetsch, M.E.: Detecting orbitopal symmetries. In: Operations Re-
search Proceedings 2008, pp. 433–438. Springer, Heidelberg (2009)

8. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry definitions
for constraint satisfaction problems. Constraints 11, 115–137 (2006)

9. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: Proceedings of the Fifth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 1996), pp. 148–159. Morgan
Kaufmann, San Francisco (1996)

10. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

11. Flener, P., Pearson, J., Sellmann, M.: Static and dynamic structural symme-
try breaking. Annals of Mathematics and Artificial Intelligence 57(1), 37–57
(2009)

12. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. Journal of the ACM 56:25:1–25:32 (2009)

13. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artificial Intelligence 170, 803–834 (2006)

14. Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Com-
positio Mathematica 6, 239–250 (1938)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

16. Gent, I.P., Petrie, K.E., Puget, J.-F.: Symmetry in constraint programming. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming,
pp. 329–376. Elsevier, Amsterdam (2006)

17. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg
(1993)

18. Januschowski, T., Pfetsch, M.E.: The maximal k-colorable subgraph prob-
lem and orbitopes (2010) (preprint), http://www.optimization-online.org/DB_
HTML/2010/11/2821.html

Branch-Cut-and-Propagate for the Maximum k-Colorable Subgraph Problem 115

19. Januschowski, T., Pfetsch, M.E.: Branch-cut-and-propagate for the maximum k-
colorable subgraph problem (2011) (preprint),
http://www.optimization-online.org/DB_HTML/2011/02/2909.html

20. Johnson, D.S.: The NP-completeness column: An ongoing guide. V. Journal of
Algorithms 3, 381–395 (1982)

21. Kaibel, V., Peinhardt, M., Pfetsch, M.E.: Orbitopal fixing. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 74–88. Springer,
Heidelberg (2007)

22. Kaibel, V., Pfetsch, M.E.: Packing and partitioning orbitopes. Mathematical Pro-
gramming 114(1), 1–36 (2008)

23. Katsirelos, G., Narodytska, N., Walsh, T.: On the complexity and completeness
of static constraints for breaking row and column symmetry. In: Cohen, D. (ed.)
CP 2010. LNCS, vol. 6308, pp. 305–320. Springer, Heidelberg (2010)

24. Koster, A.M.C.A., Ruepp, S.: Benchmarking RWA strategies for dynamically con-
trolled optical networks. In: Proceedings of the Thirteenth International Telecom-
munications Network Strategy and Planning Symposium (NETWORKS 2008),
pp. 1–14 (2008)

25. Koster, A.M.C.A., Scheffel, M.: A routing and network dimensioning strategy to
reduce wavelength continuity conflicts in all-optical networks. In: Proceedings of
the International Network Optimization Conference (INOC 2007), Spa, Belgium
(2007)

26. Linderoth, J., Ostrowski, J.P., Rossi, F., Smriglio, S.: Orbital branching. In:
Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 104–118.
Springer, Heidelberg (2007)

27. Lucet, C., Mendes, F., Moukrim, A.: Pre-processing and linear-decomposition al-
gorithm to solve the k-colorability problem. In: Ribeiro, C.C., Martins, S.L. (eds.)
WEA 2004. LNCS, vol. 3059, pp. 315–325. Springer, Heidelberg (2004)

28. Margot, F.: Pruning by isomorphism in branch-and-cut. Mathematical Program-
ming 94(1), 71–90 (2002)

29. Margot, F.: Small covering designs by branch-and-cut. Mathematical Program-
ming 94(2-3), 207–220 (2003)

30. Margot, F.: Symmetric ILP: Coloring and small integers. Discrete Optimiza-
tion 4(1), 40–62 (2007)

31. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T.,
Naddef, D., Nemhauser, G.L., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L.
(eds.) 50 Years of Integer Programming 1958–2008, ch. 17, pp. 647–681. Springer,
Heidelberg (2010)

32. McKay, B.D.: Practical graph isomorphism. In: Congressus Numerantium, pp. 45–
87 (1981)

33. Méndez-Díaz, I., Zabala, P.: A polyhedral approach for graph coloring. Electronic
Notes in Discrete Mathematics 7, 178–181 (2001)

34. Méndez-Díaz, I., Zabala, P.: A branch-and-cut algorithm for graph coloring. Dis-
crete Applied Mathematics 154(5), 826–847 (2006)

35. Méndez-Díaz, I., Zabala, P.: A cutting plane algorithm for graph coloring. Discrete
Applied Mathematics 156(2), 159–179 (2008)

36. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-
Interscience, New York (1988)

37. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathemat-
ical Programming 126(1), 147–178 (2011)

116 T. Januschowski and M.E. Pfetsch

38. Puget, J.-F.: On the satisfiability of symmetrical constrained satisfaction problems.
In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 350–361.
Springer, Heidelberg (1993)

39. SCIP. Solving Constraint Integer Programs, http://scip.zib.de
40. Sewell, E.C.: An improved algorithm for exact graph coloring. In: Johnson, D.S.,

Trick, M. (eds.) Cliques, Coloring, and Satisfiability. Second DIMACS Implemen-
tation Challenge. Proceedings of a Workshop held at DIMACS, 1993. Ser. Discrete
Math. Theor. Comput. Sci., vol. 26, pp. 359–373. AMS, DIMACS (1996)

Climbing Depth-Bounded Adjacent Discrepancy

Search for Solving Hybrid Flow Shop Scheduling
Problems with Multiprocessor Tasks

Asma Lahimer1, Pierre Lopez1, and Mohamed Haouari2

1 CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS,

F-31077 Toulouse Cedex 4, France
{asma.lahimer,pierre.lopez}@laas.fr

2 INSAT, Institut National des Sciences Appliquées et de Technologie
Centre Urbain Nord BP 676 - 1080 Tunis Cedex, Tunisie

mohamed.haouari@insat.rnu.tn

Abstract. This paper considers multiprocessor task scheduling in a
multistage hybrid flow-shop environment. The problem even in its sim-
plest form is NP-hard in the strong sense. The great deal of interest for
this problem, besides its theoretical complexity, is animated by needs of
various manufacturing and computing systems. We propose a new ap-
proach based on limited discrepancy search to solve the problem. Our
method is tested with reference to a proposed lower bound as well as the
best-known solutions in literature. Computational results show that the
developed approach is efficient in particular for large-size problems.

Keywords: Hybrid flow shop scheduling, Multiprocessor tasks, Discrep-
ancy search.

1 Introduction

Flow shop scheduling refers to a manufacturing facility in which all jobs visit
the production machines in the same order. In hybrid flow shop scheduling, the
jobs serially traverse stages following the same production route, and must be
assigned to one of the parallel machines composing each stage. The hybrid flow
shop scheduling problem with multiprocessor tasks is itself a generalization of
the hybrid flow shop problem, allowing tasks to be processed on more than one
processor in a given stage, at a time. It can also be viewed as a specific case of
the resource-constrained project scheduling problem (RCPSP).

Many applications of hybrid scheduling problems with multiprocessor tasks
can be found in various manufacturing systems (e.g., work-force assignment in
[6], transportation problem with recirculation in [4]), as well as in some computer
systems (e.g., real-time machine-vision [8]).

Hybrid flow shop scheduling problem with multiprocessor tasks has received
considerable attention from researchers and has been solved by various ap-
proaches, e.g. genetic algorithms [16], tabu search, and ant colony system [21].

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 117–130, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

118 A. Lahimer, P. Lopez, and M. Haouari

Motivated by the success of discrepancy search for solving shop scheduling prob-
lems, in particular hybrid flow shop [2], [3], we propose in this paper a new ap-
proach based on discrepancy search to solve the hybrid flow shop problem with
multiprocessor tasks.

2 Problem Definition

The hybrid flow shop scheduling problem with multiprocessor tasks can be for-
mally described as follows: A set J={1, 2, . . . , n} of n jobs, have to be processed
in m stages. Hence, a job is a sequence of m tasks (one task for each stage). Each
stage i = {1, 2, . . . , m} consists of mi identical parallel processors. In a stage i,
the job j requires simultaneously sizeij processors. That is, sizeij processors
selected at stage j are required for processing job j for a period of time equal to
the processing time requirement of job j at stage i, namely pij . The objective is
to minimize the makespan (Cmax), that is, the completion time of all tasks in the
last stage. According to the classical 3-field notation in production scheduling,
the problem is denoted by Fm(m1,. . .,mm)|sizeij|Cmax.

3 Discrepancy Search

3.1 General Statement

Limited discrepancy search (LDS) was introduced in 1995 by Harvey and Gins-
berg [10]. This seminal method can be considered as an alternative to the branch-
and-bound procedure, backtracking techniques, and iterative sampling. From
an optimization view-point this technique is similar to variable neighbourhood
search. Discrepancy search has been further extended in the literature [9,13] to
become Local Branching applied to Mixed-Integer Programs (MIPs) and Con-
straint Programming (CP). The neighbourhood in local branching is so defined
using the spirit of limited discrepancy search.

Indeed, it starts from an initial global instantiation suggested by a given
heuristic and successively explores branches with increasing discrepancies from
it, in order to obtain a solution (in a satisfaction context), or a solution of better
performance (in an optimization context). A discrepancy is associated with any
decision point in a search tree where the choice goes against the heuristic. For
convenience, in a tree-like representation the heuristic choices are associated
with left branches while right branches are considered as discrepancies. Figure 1
illustrates the spirit of LDS. At kth iteration, solutions having discrepancies
between 0 and k are visited. The first line in the figure illustrates the order its
branches are visited while the second line shows the number of discrepancies
associated with each solution. Since LDS proposition in 1995, several variants
were suggested, among them, Improved Limited Discrepancy Search (ILDS) [14],
Depth-bounded Discrepancy Search (DDS) [23], Discrepancy-Bounded Depth
First Search [1] and Climbing Discrepancy Search (CDS) [15].

In the following sections, we focus on those methods that inspired our
approach, in particular DDS and CDS.

Climbing Depth-Bounded Adjacent Discrepancy Search 119

0th Iteration

1
0

1st Iteration

0
5

1
4

1
3

1
2

2nd Iteration

0
12

1
11

1
10

2
9

1
8

2
7

2
6

3th Iteration

0
20

1
19

1
18

2
17

1
16

2
15

2
14

3
13

Fig. 1. Limited Discrepancy Search

3.2 Depth-Bounded Discrepancy Search

Depth-bounded Discrepancy Search (DDS) developed in [23], is an improved
LDS that prioritizes discrepancies at the top of the tree to correct early mistakes
first. This assumption is ensured by means of an iteratively increasing bound
on the tree depth. Discrepancies below this bound are prohibited. DDS starts
from an initial solution. At ith iteration, it explores those solutions on which
discrepancies occur at a depth not greater than i.

3.3 Climbing Discrepancy Search

Climbing Discrepancy Search (CDS) is a local search method adapted to com-
binatorial optimization problems proposed in [15]. CDS starts from an initial
solution that would be dynamically updated. Indeed, it visits branches progres-
sively until a better solution is reached. Then, the initial solution is updated and
the exploration process is restarted.

4 Proposal: Climbing Depth-Bounded Adjacent
Discrepancy Search

4.1 CDADS: Main Features

To stick to the problem under consideration, we now consider an optimization
context. We propose CDADS (Climbing Depth-bounded Adjacent Discrepancy
Search) method, that is a combination of a depth-bounded discrepancy search
and a climbing discrepancy search. We also assume that, if several discrepancies

120 A. Lahimer, P. Lopez, and M. Haouari

0th Iteration

1
0

1st Iteration

1
4

1
3

1
2

2nd Iteration

2
6

2
5

3th Iteration

3
7

Fig. 2. Depth-bounded Ajacent Discrepancy Search

occur in the construction of a solution, these discrepancies are necessarily ad-
jacent in the list of successive decisions. CDADS starts from an initial solution
obtained by a given heuristic, and explores its neighborhood progressively, ac-
cording to the depth-bounded discrepancy search strategy. Hence, a limit depth
d is fixed. Discrepancies below this bound are prohibited. At ith iteration, we
allow i discrepancies above the limit level d.

When considering solutions with more than one discrepancy, we require these
discrepancies are achieved consecutively, that means a solution consists of discrep-
ancies that happen one after the other. This assumption of adjacency consider-
ably limits the search space. We also consider that the initial solution is generated
by a ‘good’ heuristic. Thus, only the immediate neighborhood of a discrepancy
may receive an additional discrepancy. Even if we are aware that other strategies
for limiting the search space could be envisaged (focusing for example on given
subsets of discrepancies), we make the bet that only performing adjacent discrep-
ancies is promising. We then obtain a truncated DDS based on adjacent discrep-
ancies, DADS (Depth-bounded Adjacent Discrepancy Search). This approach is
illustrated by an example on a binary tree of depth 3 (see Figure 2).

At the starting point, DADS visits the initial solution recommended by the
heuristic. For convenience, we assume that left branches follow the heuristic.
At first iteration, DADS visits leaf nodes at the depth limit with exactly one
discrepancy. The first line shown under the branches reports the visit order of
considered solution, while the second line illustrates the number of discrepancies
made in each solution. The 2nd iteration allows to exploring more solutions with

Climbing Depth-Bounded Adjacent Discrepancy Search 121

two discrepancies with respect to the adjacency assumption. In this representa-
tion, the maximum depth bound is taken to be 3. If now, we limit the depth
to two levels, several branches would not be retained, namely the branches 4, 6,
and 7 would not be visited by DADS.

Going back to the optimization issue, CDADS merges the DADS strategy
with a CDS exploration principle, that is the initial solution used by DADS is
dynamically updated when a best solution is found, and the exploration process
is restarted.

4.2 Heuristics

CDADS is strongly based on the quality of the initial solution. Thus, we carried
out an experimental comparison between various priority rules presented in the
literature [21], [17]. We considered the most effective heuristics to multiprocessor
task hybrid flow shop scheduling. The four selected rules are:

– SPT (Shortest Processing Time), which ranks jobs according to the ascend-
ing order of their processing times;

– SPR (Shortest Processing Requirement), which ranks jobs according to the
ascending order of their processing requirement;

– the Energy rule, considering first the jobs with the smallest energy (where
the energy of an operation j at a stage i is evaluated by pij × sizeij); and

– NSPT LastStage (Normalized SPT applied at the last stage). For this
latest rule, Şerifoğlu and Ulusoy [21] propose to schedule jobs according to
their ranking index (RIj) defined by:

RIj =
max

k
{pmk} − pmj + 1

max
k

{pmk} + 1 .

In Table 1, the selected priority rules are ranked according to their percentage
of best solutions found, that is, performance.

4.3 Schedule Generation Scheme

Schedule generation schemes (SGSs) are widely used in solving preemptive prob-
lems. We distinguish between serial SGS and parallel SGS. These two heuristics
ensure task scheduling based on a given priority rule. Hence, tasks are selected
one after the other and a start time is fixed for each one.

Table 1. Heuristic selection

Priority Rule Performance (%)

NSPT LastStage 27

Energy 25

SPT 17

SPR 14

122 A. Lahimer, P. Lopez, and M. Haouari

Serial SGSs are introduced in [12]. At each iteration, the first available task
in ζ is selected, where ζ is the priority list recommended by the priority rule.
The selected task is scheduled as soon as possible with respect to both resource
constraints and precedence constraints.

Parallel SGSs developed in [5], suggest a chronological procedure in scheduling
tasks. At each time t, a set ζt of tasks being scheduled is defined: this set contains
unscheduled tasks that can be processed at t without breaking neither precedence
constraints nor resource constraints. If we consider that t is the first time where
ζt �= ∅, the first task in the priority list ζ belonging to ζt is performed at t. The
same process is applied until all tasks are scheduled. The two schemes depicted
above may appear similar. However, the schedule they generate are different: a
serial SGS provides an active schedule while a parallel SGS generates a non-delay
schedule.

In the scheduling theory, Sprecher et al. [22] show that the set of active sched-
ules includes at least one optimal solution. On the contrary, non-delay schedules
may eliminate all optima.

Concerning our method CDADS, we do not enumerate all possible solutions,
so even serial SGSs may exclude all optimum solutions. Furthermore, in practice,
parallel SGSs are known for their operational efficiency. Hence, we opt for the
implementation of a parallel SGS which has been proved, moreover, to be more
efficient in our experimental studies.

4.4 Lower Bound

For efficiency purpose, we join CDADS with an evaluation of lower bounds at
each node. The proposed lower bound is based on lower bounds previously pre-
sented in [16]. Even though our bound presented below is largely taken from
this latest reference, the mathematical expression was revised in two places to
be more accurate. Thus, we suggest this formula:

LB = max(LBs,LBj)

where LBj is a job-based lower bound similar to the one suggested in [16]:

LBj = max
j∈J

(
m∑

i=1

pij); and LBs is a stage-based lower bound: LBs= max
i=1..m

LB(i).

For this latter bound, we claim that:

LB(i)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max[M1(i), M2(i), max
j∈J

(pij)] + min
j∈J

(
m∑

l=i+1

plj) , ∀i = 1

min
j∈J

(
i−1∑
l=1

plj)+ max[M1(i), M2(i), max
j∈J

(pij)]+ min
j∈J

(
m∑

l=i+1

plj) , ∀i=2..m − 1

min
j∈J

(

i−1∑
l=1

plj) + max[M1(i), M2(i), max
j∈J

(pij)] , ∀i = m

Climbing Depth-Bounded Adjacent Discrepancy Search 123

where
M1(i) =

⌈
1

mi

∑
j∈J

(pijsizeij)
⌉

and

M2(i) =
∑
j∈Ai

pij +
1
2

∑
j∈Bi

pij ,

with
Ai = {j|sizeij >

mi

2
}

and

Bi = {j|sizeij =
mi

2
}.

Justification of the expression of LB(i).

We assume that only non-delay task scheduling is considered.

The first term of LB(i) gives a lower bound on the beginning of every
job j ∈ J on any machine of stage i.

The last term can be explained accordingly, since it is associated with
the minimal required time to achieve the processing of every job j on all
the subsequent stages of stage i.

The middle term concerns the processing of jobs on stage i. M1(i) stands
for the mean stage load for job preemptive scheduling, while M2(i) re-
views two different situations for partitionning the jobs according to their
resource requirement. Set Ai consists of jobs that must be processed se-
quentially (resource requirement greater than the half of the resource
capacity mi). Set Bi groups together the jobs having a resource require-
ment exactly equal to the half of the resource capacity. Obviously, a job
belonging to Ai and another job belonging to Bi must also be processed
sequentially. The added term max

j∈J
(pij) (that is one of the revisions) con-

tributes to maximize the evaluation of stage load on a considered stage i,
especially when some jobs having high processing time are being sched-
uled.

This justifies the validity of the bound. �

5 Computational Study

5.1 Test Beds

For comparison purpose, we assess the performance of CDADS on instances
of Oğuz’s benchmark available on her home page: http://home.ku.edu.tr/
coguz/public_html/. This benchmark is widely used in the literature [20], [11],
[18].

124 A. Lahimer, P. Lopez, and M. Haouari

The number of jobs is taken to be n = 5, 10, 20, 50, 100 and the number of
stages m takes its value from the set {2, 5, 8}. The benchmark considers two
types of problems, “Type-1” and “Type-2”. In ‘Type-1’ instances, the number
of processors mi available at each stage i (resource capacity) is randomly deter-
mined from the set {1, . . . , 5}, while in ‘Type-2’ mi is fixed to 5 processors for
every stage i. In fact, ‘Type-2’ instances are globally more flexible than ‘Type-1
instances’. For each combination of n and m, and for each type, 10 instances are
randomly generated, which leads a total of 300 instances. The processing time of
each job j in stage i (pij) and its processing requirement (sizeij) are integer and
are randomly generated from sets {1, . . . , 100} and {1, . . . , mi}, respectively.

The algorithm implementing CDADS was coded in C++ and run on an In-
tel core 2 Duo 2 GHz PC. The maximum CPU time is set to 60 seconds. The
exploration is also stopped when CDADS reaches a given lower bound on the
makespan. Obviously, if CDADS misses the optimal solution, the best-found so-
lution when the maximum CPU time is reached, is then taken to be the problem
solution.

5.2 Restart Policy

For the computational study, we have then retained four priority rules to generate
the initial solutions (see Section 4.2). That is why whe have introduced a restart
policy to benefit from these heuristics. At a starting point, we use the best
rule, that is the NSPT LastStage. However, if no improvement is noticed during
the CDADS search, we restart the process with another solution obtained by
applying the next rule “Energy” that could lead a more efficient solution for this
specific instance, and so on.

The restart policy is limited by the size of the heuristics pool: restarts are then
allowed at most four times, since we have selected four rules. At each restart k
(starting from k = 0), we increase the number of maximum nodes that can be
visited according to a geometrical series nbrNodes ×fk, where f is fixed to 1.3
and nbrNodes varies linearly with the problem size (the number of jobs n; for
example for n = 20 we fix nbrNodes to 2000 nodes). Hence the search space is
expanded at each restart.

5.3 Results

We tested two strategies for applying discrepancy: Top First and Bottom First. In
the Top First exploration, discrepancies at the top of the tree are privileged while
the Bottom First strategy favors discrepancies at the bottom. Computational
study shows that CDADS is really more efficient with a Top First strategy (then
contradicting – for the problem at hand – the statement of relative indifference
of discrepancy order by [19]). Thus, the results shown below refer to this latter
strategy.

Table 2 gives for each configuration (n: number of jobs, and m: number of
stages) and each type, the average percentage deviation (%dev) and the average
CPU time. The average percentage deviation is measured in two ways:

Climbing Depth-Bounded Adjacent Discrepancy Search 125

• For small problems, solutions are compared to the optimal solutions (C∗
max

denotes the optimum makespan):

Cmax − C∗
max

C∗
max

× 100;

• For larger problems, solutions found by the CDADS are compared to the
lower bound (LB):

Cmax − LB

LB
× 100.

As explained in Section 5.2, CDADS is run four times on each of the selected
priority rules (NSPT LastStage, Energy, SPT, SPR) for each instance. The best
solution is taken to be the CDADS solution for the corresponding problem.
According to findings of [21], the Fm(m1,. . .,mm)|sizeij|Cmax problem and its
symmetric have the same optimal makespan. Referring to this property, we apply
a two-directional planning (forward schedule and backward schedule).

From Table 2, it is observed that the average percentage deviation is higher
for ‘Type-1’ instances. Globally, %dev is 1.66% for ‘Type-1’ problems and 6.39%
for ‘Type-2’ problems. This increase can be linked to several assumptions: the
lower bound becomes less effective as mi increases in ‘Type-2’ instances and so
the average percentage deviation would be higher. Another explanation can also
be considered: the number of processors are fixed in ‘Type-2’ problems, that is
mi = 5, and the scheduling problem becomes more difficult to solve for CDADS.

Table 2. CDADS performance

‘Type-1’ Problems ‘Type-2’ Problems
n m %dev CPU(s) %dev CPU(s)

5 2 0 < 0.1 0 < 0.1
5 0.21 < 0.1 0.46 < 0.1
8 1.71 < 0.1 0.5 < 0.1

10 2 0 < 0.1 1.72 < 0.1
5 0.66 0.4 6.44 < 0.1
8 8.47 < 0.1 9.61 0.2

20 2 0.05 0.1 3.34 3.1
5 2.57 1.1 7.97 1.3
8 5.11 0.2 15 1.3

50 2 0.49 2.3 1.74 4.2
5 0.54 5 8.2 13.5
8 1.62 6.8 12.42 33.4

100 2 0.08 11.1 3.32 22.8
5 1.5 13.6 10.75 40.9
8 1.86 11 14.33 47.3

Global average 1.66 3.44 6.39 10.53

126 A. Lahimer, P. Lopez, and M. Haouari

Results show the behavior of our approach with variations of n and m. For a
given n, the average percentage deviation increases with increasing m. Indeed,
the problem difficulty increases when m increases and the obtained solution is
further away from the lower bound. On the other hand, for a given number
of stages m, increasing n has no significant effect on the average percentage
deviation, as the effectiveness of CDADS is independent of the number of jobs:
the stability of our method seems to be not linked to the number of jobs n, since
for a given m (e.g., m = 8), in ‘Type-1’ problems, when n increases from 50
jobs to 100 jobs, the average percentage deviation increase slightly (from 1.62%
to 1.86%). It also can be noticed, that in some cases, increasing n results in a
decrease in the deviation value (for the configuration n = 20, m = 8 the %dev is
taken to be 5.11%, and is evaluated to 1.62% for n = 50, m = 8). Apparently,
the lower bound becomes more effective with n increasing.

From the experimental studies, it can be observed that CDADS converges
quickly. The average CPU time varies between less than 0.1 seconds and 47.3
seconds. The computational cost is more important in ‘Type-2’ instances, con-
firming the difficulty of these problems. Similarly, for a fixed m, increasing n
leads to CPU time increase. Conversely, when n is fixed, increasing m increases
the CPU time.

5.4 Comparison of CDADS Solutions with State-Of-the-Art Results

Table 3 presents the results of CDADS on %dev, the average percentage deviation
(as well as a synthesis of the average CPU time for all instances, in the last line
of the table). Furthermore, it shows the results obtained by Jouglet et al. in [11].
These results are the most recent and the best-known solutions in literature.
Thus, we have compared the results of CDADS with GA (genetic algorithm), CP
(constraint programming), and MA (memetic algorithm). The CP approach is
based on a branch-and-bound algorithm with constraint propagation techniques.
The applied techniques are based on processing disjunctive constraints, edge-
finding and energetic reasoning from the implementation in Ilog Scheduler.
Concerning the memetic algorithm, it incorporates the constraint programming
into a genetic algorithm as its local search engine. We disregard the results
published by Ercan et al. [16] given inconsistency encountered. We contrast
our results only versus those presented in [11]. However, we omit the average
deviation published in this latest paper due to detected miscalculation (induced
by Ercan et al.’s errors). Hence, we recalculated the average percentage deviation
for all methods given in [11]. The maximum CPU time is fixed at 900 seconds
for GA, CP, and MA.

As revealed in Table 3 (and as already noticed in Table 2), on the whole, the
total average of %dev obtained by CDADS is 1.66% and 6.39% for the ‘Type-1’
and ‘Type-2’ problems, respectively. Compared to the corresponding averages
of 2.27% and 7.28% achieved by GA, and the corresponding values of 5.39%
and 11.92 % obtained by CP, CDADS outperforms the GA and CP algorithms.
Furthermore, CDADS was clearly superior to CP especially for larger instances
(n = 50 and n = 100).

Climbing Depth-Bounded Adjacent Discrepancy Search 127

Table 3. Comparing average percentage deviation (and CPU time)

‘Type-1’ Problems ‘Type-2’ Problems
n m CDADS GA CP MA CDADS GA CP MA

5 2 0 0.29 0 0 0 1.23 0 0
5 0.21 1.35 0 0 0.46 1.44 0 0
8 1.71 4.15 0 0 0.5 2.38 0 0

10 2 0 0 0 0 1.72 2.83 1.72 1.75
5 0.66 1.64 0 0 6.44 7.8 6.1 5.67
8 8.47 9.38 10.32 8.02 9.61 10.87 8.37 8.8

20 2 0.05 0.44 2.59 0.66 3.34 3.7 6.72 3.43
5 2.57 3.49 10.85 2.78 7.97 9.57 22.86 9.57
8 5.11 5.69 17.98 5.32 15 17.26 28.52 16.02

50 2 0.49 0.63 2.79 0.49 1.74 2.76 6.54 2.21
5 0.54 0.59 5.3 0.51 8.2 10.95 20.01 10.32
8 1.62 2.17 14.42 1.71 12.42 15.89 30.06 17.25

100 2 0.08 0.15 1.96 0.07 3.32 3.05 5.68 2.7
5 1.5 2.5 5.19 2.33 10.75 14.95 19.13 14.37
8 1.86 1.99 9.47 2.15 14.33 20.06 23.15 17.83

Global average 1.66 2.27 5.39 1.6 6.39 7.28 11.92 8.32

Average CPU(s) 3.44 879.93 320.3 326.01 10.53 879.08 423.09 511.27

As depicted in the table, MA finds slightly better solutions in ‘Type-1’ prob-
lems, that is 1.60% is obtained by MA while CDADS gives an average deviation
percentage of 1.66%. Overall, CDADS outperforms significantly MA, as CDADS
results are at 6.39% from optimal solutions (or lower bounds) for ‘Type-2’ prob-
lems against 8.32% for MA.

To further assess the effectiveness of CDADS, we measure the number of im-
proved known solutions. It can be seen from Table 4 that CDADS improves 75
known solutions among the 300 tested instances. Thus, the rate of improvement
reaches 25%. The results also outline that most improvements are spotted in
large instances (n = 50, 100), see figure 3. No significant improvements are no-
ticed for small instances (n = 5, 10) since all optimal solutions for these problems
are known.

In this study, we also compare the convergence of algorithms. It can be seen
from the last line of Table 3, that CDADS outperforms the genetic algorithm
(GA), constraint programming (CP), and the memetic algorithm (MA). Indeed,
CDADS takes between less than 0.1 seconds (for small problems) and 47.3
seconds (for large problems) to find their solutions, while methods proposed
in [11] converge much more slower [0.7 sec, 900 sec]. Even all results were ob-
tained under different computational budgets, we can conclude that CDADS

128 A. Lahimer, P. Lopez, and M. Haouari

Table 4. Number of improved solutions

n ‘Type-1’ Problems ‘Type-2’ Problems

5 0 0

10 1 0

20 5 10

50 8 20

100 8 23
total 22 53

20 40 60 80 100

0

5

10

15

20

25

Number of jobs

N
u
m

b
er

o
f
im

p
ro

v
ed

so
lu

ti
o
n
s

Type1.

Type2.

Fig. 3. Variation of the number of improved solutions with the number of jobs

demonstrates fast convergence. Indeed, according to Dongarra’s normalized coef-
ficients [7], our machine is approximately only 3.5 times faster than the machine
used by Jouglet et al.

6 Conclusions

In this paper, the hybrid flow shop problem with multiprocessor tasks is ad-
dressed by means of a discrepancy search method. The proposed method, Climb-
ing Depth-bounded Adjacent Discrepancy Search (CDADS), is based on adjacent
discrepancies. We selected several heuristics to generate the initial solution. A
lower bound is also proposed to lead a more efficient search. Compared to the
best-known results in the literature, CDADS provides better solutions in little
CPU time.

Climbing Depth-Bounded Adjacent Discrepancy Search 129

In the very short-term, it would be beneficial for our study to explore the im-
pact of adjacent discrepancies vs. other strategies for limiting the search space.
Also, we would consider the application of CDADS to simpler problems like
classical hybrid flow shop (sizeij = 1, ∀ i, j), widely studied in the literature.
Another expected aim would be to adapt the proposed implementation of dis-
crepancy search to more general scheduling problems, in particular the Resource-
Constrained Project Scheduling Problem, which still remains one of the most
challenging problems in large-scale scheduling.

References

1. Beck, J.C., Perron, L.: Discrepancy-bounded depth first search. In: Proceedings of
CPAIOR 2000, pp. 8–10 (2000)

2. Ben Hmida, A., Haouari, M., Huguet, M.-J., Lopez, P.: Solving two-stage hybrid
flow shop using climbing depth-bounded discrepancy search. Computers and In-
dustrial Engineering 60(2), 320–327 (2010)

3. Ben Hmida, A., Huguet, M.-J., Lopez, P., Haouari, M.: Climbing depth-bounded
discrepancy search for solving hybrid flow shop scheduling problems. European
Journal of Industrial Engineering 1(2), 223–243 (2007)

4. Bertel, S., Billaut, J.-C.: A genetic algorithm for an industrial multiprocessor flow
shop scheduling problem with recirculation. European Journal of Operational Re-
search 159(3), 651–662 (2004)

5. Brooks, G., White, C.: An algorithm for finding optimal or near optimal solutions
to the production scheduling problem. Journal of Industrial Engineering 16, 34–40
(1965)

6. Chen, J., Lee, C.-Y.: General multiprocessor task scheduling. Naval Research Lo-
gistics 46, 57–74 (1999)

7. Dongarra, J.: Performance of various computers using standard linear equations
software. Technical report, University of Tennessee (2009)

8. Ercan, M.F., Fung, Y.-F.: Real-time image interpretation on a multi-layer archi-
tecture. In: Proceedings of IEEE TENCON 1999, pp. 1303–1306 (1999)

9. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–47
(2003)

10. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of
the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995),
Montréal, Québec, Canada, vol. 1, pp. 607–615 (August 1995)

11. Jouglet, A., Oğuz, C., Sevaux, M.: Hybrid flow-shop: a memetic algorithm using
constraint-based scheduling for efficient search. Journal of Mathematical Modelling
and Algorithms 8, 271–292 (2009)

12. Kelley Jr, J.E.: The critical-path method: Resources planning and scheduling. In:
Thompson, G.L., Muth, J.F. (eds.) Industrial Scheduling, pp. 347–365. Prentice-
Hall, Englewood Cliffs (1963)

13. Kiziltan, Z., Lodi, A., Milano, M., Parisini, F.: CP-based local branching. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 847–855. Springer, Heidelberg
(2007)

14. Korf, R.E.: Improved limited discrepancy search. In: Proceedings of the 13th Na-
tional Conference on Artificial Intelligence (AAAI 1996), Portland, OR, vol. 1, pp.
286–291 (August 1996)

130 A. Lahimer, P. Lopez, and M. Haouari

15. Milano, M., Roli, A.: On the relation between complete and incomplete search:
an informal discussion. In: Proceedings of CPAIOR 2002, Le Croisic, France, pp.
237–250 (2002)

16. Oğuz, C., Ercan, M.F.: A genetic algorithm for hybrid flow-shop scheduling with
multiprocessor tasks. Journal of Scheduling 8, 323–351 (2005)

17. Oğuz, C., Fung, Y.-F., Ercan, M.F., Qi, X.-T.: Parallel genetic algorithm for a flow
shop problem with multiprocessor tasks. In: International Conference on Compu-
tational Science, Berlin, Heidelberg, pp. 548–559 (2003)

18. Oğuz, C., Zinder, Y., Ha Do, V., Janiak, A., Lichtenstein, M.: Hybrid flow shop
scheduling problems with multiprocessor task systems. European Journal of Oper-
ational Research 152, 115–133 (2004)

19. Prosser, P., Unsworth, C.: LDS: testing the hypothesis. Technical Report DCS
TR-2008-273, Dept of Computing Science, University of Glasgow (2008)

20. Şerifoğlu, F.S., Ulusoy, G.: Multiprocessor task scheduling in multistage hybrid
flow-shops: A genetic algorithm approach. European Journal of Operational Re-
search 55(5), 504–512 (2004)

21. Şerifoğlu, F.S., Ulusoy, G.: Multiprocessor task scheduling in multistage hybrid
flow-shops: An ant colony system approach. International Journal of Production
Research 44(16), 3161–3177 (2006)

22. Sprecher, A., Kolisch, R., Drexl, A.: Semi-active, active, and non-delay schedules
for the resource-constrained project scheduling problem. European Journal of Op-
erational Research 80(1), 94–102 (1995)

23. Walsh, T.: Depth-bounded discrepancy search. In: Proceedings of the 15th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya, Japan,
vol. 2, pp. 1388–1395 (August 1997)

On Counting Lattice Points and

Chvátal-Gomory Cutting Planes

Andrea Lodi1, Gilles Pesant2, and Louis-Martin Rousseau2

1 DEIS, Università di Bologna
andrea.lodi@unibo.it

2 CIRRELT, École Polytechnique de Montréal
{Gilles.Pesant,Louis-Martin.Rousseau}@polymtl.ca

Abstract. The paper investigates the relationship between counting the
lattice points belonging to an hyperplane and the separation of Chvátal-
Gomory cutting planes. In particular, we show that counting can be ex-
ploited in two ways: (i) to strengthen the cuts separated, e.g., by Gomory
classical procedure, and (ii) to heuristically evaluate the effectiveness of
those cuts and possibly select only a subset of them. Empirical results
on a small set of 0-1 Integer Programming instances are presented.

Keywords: Counting; Lattice points; Cutting Planes; Cut selection.

1 Introduction

We consider the Integer Linear Program (ILP) problem

min{cT x : Ax ≤ b, x ≥ 0 integer} (1)

where A is a m × n matrix, b ∈ IRm, and c ∈ IRn and we assume that (A, b)
is an integer matrix. In addition, we assume all variables are upper bounded
and the bound constraints are included in the system Ax ≤ b. We consider two
associated polyhedra:

P := {x ∈ IRn
+ : Ax ≤ b} (2)

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn). (3)

Cutting plane generation is one of the most useful ingredients for solving ILPs
and, more generally, Mixed Integer Linear Programming (MILP) problems, i.e.,
the general problems in which some of the variables are not restricted to assume
integer values (see, Lodi [11] and Linderoth and Lodi [10] for dedicated surveys
on MILP computation and software, respectively). Roughly speaking, a cutting
plane, or cut in short, is a (redundant) linear inequality which is valid for PI ,
i.e., does not cut off any feasible solution of the ILP at hand, and is violated by
some solutions in P . In particular, the separation problem

given a feasible solution x∗ ∈ P , find a linear inequality αT x ≥ α0 which
is valid for (3), i.e., satisfied by all feasible solutions x̄ of the system (1),
while it is violated by x∗, i.e., αT x∗ < α0, or prove that none exists

is iteratively solved and the cuts are added to P to improve the approximation.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 131–136, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

132 A. Lodi, G. Pesant, and L.-M. Rousseau

A famous class of cutting planes for ILP is the classical Chvátal-Gomory (CG)
cut family [9,6]. A CG cut is a valid inequality for PI of the form

�uT A�x ≤ �uT b� , (4)

where u ∈ Rm
+ is called the CG multiplier vector, and �·� denotes lower integer

part. It was proved by Eisenbrand [8] that separation of a generic x∗ ∈ P is
NP-hard, but, in the special case in which x∗ is fractional vertex of P associated
with a certain basis B (say) of (A, I), Gomory [9] has shown that it can be cut
off by the CG cut in which u is chosen as the i-th row of B−1, where i is the
row associated with any fractional component of x∗.

Roughly speaking, a CG cut is derived by: (i) combining with non-negative
multipliers other valid constraints, i.e., uT Ax ≤ uT b is clearly valid for PI , as
well as its weakened version �uT A�x ≤ uT b; and (ii) shifting the inequality
�uT A�x ≤ uT b towards the interior of the polyhedron until it touches the first
integral point, so as to obtain �uT A�x ≤ �uT b�. The validity of shifting argument
is guaranteed by the integrality of x.

It is easy to see that the integer points encountered by the inequality of step
(i) above during the shifting of step (ii) do not necessarily belong to PI .

Contribution of the paper. Although for decades the research focus for (M)ILPs
has been on finding new families of cutting planes and separate them efficiently,
nowadays it seems that the focus might be shifted on the cut selection, i.e., choos-
ing within a large set of cutting planes to be separated or already separated, a
small(er) set with the simultaneous goals of (1) improving the approximation,
and (2) keeping the size of the LP relaxation small (to speed up the LP com-
putation and avoid numerical troubles). A few attempts have been made in the
literature in this direction (see, e.g., [1,2,3,15]) but the topic is mostly unex-
plored. In this paper we discuss ideas on cut selection (for the special case of
CG cuts while extensions are briefly discussed in Section 4) originated by the
recent and sophisticated work on counting lattice points developed in several
research areas (see, e.g., Issue 81 of Optima [5]). The basic (simple) idea is as
follows: we want to use the number of integer points to which a CG cut is simul-
taneously tight (satisfied at equality) as a quality measure of the cut itself, i.e.,
to discriminate among the CG cuts solving the separation problem at a given
iteration which are the most promising to be part of the continuous relaxation
of the next iteration. In particular, at a first glance, it seems reasonable to think
that the higher the number of integer points the better, but we will show in the
computational section that it might make sense to select (also) cuts with few
tight integer points. This is conceivable for two reasons. First, the way in which
we count the number of lattice points explicitly uses variable bounds. However,
it might very well be that not only a tight integer point does not belong to PI

(as anticipated above) but in addition does not satisfy the bounds. If this is
the case for all lattice points tight to a cut, then our counting procedure gives
us a natural way of strengthening the cut by further shifting it.We have no-
ticed that such a cut becomes generally strong. Second, we empirically observed
that cuts tight to few integer points are much sparser than those tight to many.

On Counting Lattice Points and Chvátal-Gomory Cuts 133

In other words, selecting cuts tight to few lattice points keeps the LP relaxation
sparse, which is a known criterion to control numerics and speed up the LP
computation.

The paper is organized as follows. In Section 2 we present the algorithm we
use for counting lattice points and we show how to possibly exploit the counting
information in the cut generation and selection. In Section 3 we present prelimi-
nary computational results on ILPs from the literature. Some short conclusions
are drawn in Section 4 outlining open questions and potential research directions.

2 Counting for Cutting

Given an inequality in the form (4), we are interested in counting the number
of lattice points to which the inequality is tight, i.e., that satisfy the inequality
at equality. We restrict the description to the case in which the variables of the
ILP (1) are bounded. In such a case, the problem reduces to count the number
of feasible solutions of the system

αT x = β, � ≤ x ≤ u, x integer, (5)

where α, β, �, u are integer vectors.
In his paper on propagating knapsack constraints using dynamic program-

ming, Trick [13] mentions that counting the number of solutions of knapsack
constraints can be done in pseudo-polynomial time through a simple recursion.
Our approach is a direct adaptation of the latter except that since coefficients
(and possibly variables) can be negative, we first compute the largest and small-
est possible partial sums of the left hand side of (5) which can be completed to
reach β (note that this depends on the ordering of the terms). We then create
data structures of the appropriate size and restrict the state space expansion.

The algorithm previously outlined returns the number of feasible solutions of
(5) for each of the cuts which solves the separation problem at a given iteration.
We use the information in two ways.

First, if the number of lattice points tight to a specific inequality is 0, the cut
can be strengthened by reducing its right hand side. More precisely, the optimal
right hand side is the solution of the ILP

max{αT x : αT x ≤ b, � ≤ x ≤ u integer}, (6)

which in the special case x ∈ {0, 1}n reduces to the classical Subset Sum Problem.
However, we do not solve (6) directly to strengthen the cuts since the same
recursion used for counting can be used repeatedly with different tentative values
for the right hand side. We note that a more general version of this strengthening
argument is considered in [7].

Second, the number of tight lattice points is then used as a quality measure
for cut selection. We investigated the selection of the cut with the largest number
of tight points and the reverse option, that is choosing the cut which is tight to
the smallest number of lattice points. In case it is a cut which is not tight to any
(option above), the cut is strengthened before being added.

134 A. Lodi, G. Pesant, and L.-M. Rousseau

We end the section by noting that counting does not come computationally for
free. Without going into the details because of the lack of space (see [13,12]), the
counting algorithm is clearly more expensive than most of the currently used
cut selection procedures. However, here we are mainly interested in learning
something about the characteristics of good cuts to add, while the tradeoff with
respect to the computational effort will be considered in a future work.

3 Empirical Results

We have conducted a preliminary set of computational experiments with a pure
cutting plane algorithm on 7 0-1 ILP instances from the MIPLIB 3.0 as shown
in Table 1. In particular, the algorithm iteratively solves the separation problem
by the classical procedure of Gomory [9] by generating a so-called round of CG
cutting planes from the tableau, selects “some” of the separated cuts and adds
them to the LP relaxation. An LP is obviously solved at each iteration.

In the first experiment we tested the impact of the strengthening procedure
on the quality of the cuts. It is well known (see, e.g., [4]) that the best method
for using CG cuts (and, more generally, Gomory Mixed-Integer cuts) is to add
them in rounds, i.e., one cut for each of the integer-constrained variable which
is basic and fractional in the current tableau. On the 7 instances in Table 1 we
could strengthen cuts only for problems p0033 and p0548 in 1 round. Precisely,
for p0033 we strengthened 4 over 7 cuts and because of that the %gap dropped
from 17.61% to 8.18. For p0548 instead we strengthened 4 over 50 cuts, which
only slightly improved the %gap from 45.61% to 45.33.

In the second and third experiments we looked specifically at cut selection.
Namely, the results in Table 2(I) refer to the comparison between three versions
of the cutting plane procedure in which, at each round, the most violated cut
(v.most) or the cut with the largest number of tight lattice points (v.max) or
the cut with the smallest number of tight lattice points (v.min) is selected. Only
one cut per iteration for 20 iterations. It is clear from the results that selecting
the cut tight to the largest number of lattice points does not pay off while the
version tight to the smallest number of points is competitive with the classical
most violated cut selection. In fact, it is never significantly worse and twice much
better. This could be explained by the fact of being “blocked” by few(er) lattice

Table 1. Seven 0-1 ILP instances from the MIPLIB 3.0. (The %gap is computed as
(opt− lb.init)/opt, where lb.init is the initial value of the LP relaxation and opt is the
value of the optimal integer solution.)

initial lower bound optimal solution
name preprocessed value (lb.init) value (opt) %gap
harp2 Yes -74,232,132.35 -73,899,798.00 0.45
mod008 No 290.93 307.00 5.23
p0033 No 2,520.57 3,089.00 18.40
p0201 No 6,875.00 7,615.00 9.72
p0282 No 176,867.50 258,411.00 31.56
p0548 Yes 4,533.50 8,691.00 47.84
lseu Yes 947.96 1,120.00 15.36

On Counting Lattice Points and Chvátal-Gomory Cuts 135

Table 2. Percentage gap closed: (I) three versions of cut selection, one cut per iteration,
(II) two versions of cut selection, two cuts per iteration. (The %gap closed is computed
as (lb.v − lb.init)/(opt − lb.init) ∗ 100, where lb.init and opt are from Table 1 and lb.v
is the final lower bound value of a generic version v.)

%gap closed %gap closed
name v.most v.max v.min name v2.most v2.tight
harp2 4.90 0.08 0.80 harp2 6.11 9.50
mod008 6.41 1.53 3.28 mod008 5.97 3.78
p0033 0.50 0.17 54.00 p0033 46.65 54.53
p0201 15.57 6.46 15.97 p0201 15.76 18.70
p0282 0.21 0.01 0.02 p0282 0.23 0.02
p0548 3.23 0.01 3.57 p0548 3.51 3.58
lseu 5.83 3.51 41.56 lseu 8.37 40.98
average 5,24 1,68 17,03 average 12,37 18,73

(I) (II)

points can be interpreted positively: in the limit a unique tight lattice point can
be the optimal vertex of PI .

Finally, we compared a version selecting the two most violated cuts (v2.most)
with one selecting the two cuts with largest and smallest number of tight points
(v2.tight). The results reported in Table 2(II) show that on 5 over 7 of the
instances using the counting information helps to close more gap. Clearly, this
is a very limited set of experiments and more extensive computation is needed.

4 Conclusions

We have outlined and preliminary tested some ideas for using information asso-
ciated with counting lattice points to select (and strengthen) cutting planes. We
have developed and applied the method to Chvátal-Gomory cuts.

We have not discussed the computational cost of the cut selection rule based
on counting lattice points. That is clearly higher than that of most of the cur-
rently used cut selection procedures. However, the focus of the paper was mostly
on learning something about the characteristics of good cuts to add, while the
tradeoff with respect to the computational effort will be considered in a future
work. One natural option to reduce such an effort is approximate counting.

The idea of using a counting information in cutting planes can be somehow
naturally extended to other families of cuts. In particular, it is well known that
CG cuts are a special case of split cuts, where one part of the disjunction has an
empty intersection with P . Of course, one could continue testing tightness to the
cut itself (although the coefficients of the cut might be fractional, thus making
the counting algorithm of Section 2 not applicable) but it might be possible to
consider the tightness to the disjunction itself.

Finally, we observe that Zanarini and Pesant [16] and Pryor and Chinneck [14]
have recently used counting information for branching (as opposed to cutting)
but in a rather different way: in [16] the branching is shown to be most efficient
when based on the highest solution density while in [14] the smallest solution
density is clearly dominating. This seems to suggest that the way of effectively
exploiting the counting information in both branching and cutting is not clear
yet and thus need to be further investigated.

136 A. Lodi, G. Pesant, and L.-M. Rousseau

Acknowledgements

Part of this work has been done during the visits the authors exchanged within
the Italy-Quebec Executive Programme 12 “Algorithms and systems for the op-
erational planning in industry and services”. The support to the second author
by the Institute of Advanced Studies of the University of Bologna is also ac-
knowledged. The authors are grateful to Matteo Fischetti and Juliane Dunkel
for interesting discussions on the topic.

References

1. Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Pro-
gramming Computation 1, 1–32 (2008)

2. Achterberg, T.: LP Basis Selection and Cutting Planes. Research Talk @ MIP
(2010), http://www2.isye.gatech.edu/mip2010/program/program.pdf

3. Andreello, G., Caprara, A., Fischetti, M.: Embedding {0, 1
2
}-Cuts in a Branch-and-

Cut Framework: A Computational Study. INFORMS Journal on Computing 19,
229–238 (2007)

4. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory Cuts Revisited. Operations
Research Letters 19, 1–9 (1996)

5. Caprara, A., Lodi, A., Scheinberg, K. (eds.): Counting and Estimating Lattice
Points. Optima, vol. (81), http://www.mathprog.org/Optima-Issues/optima81.
pdf

6. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics 4, 305–337 (1973)

7. Dunkel, J.: On Gomory-Chvátal Cutting Planes, the Elementary Closure, and a
Strengthened Closure for Polytopes in the Unit Cube. PhD thesis. MIT, Cam-
bridge, MA (2011)

8. Eisenbrand, F.: On the membership problem for the elementary closure of a poly-
hedron. Combinatorica 19, 297–300 (1999)

9. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs.
Bulletin of the AMS 64, 275–278 (1958)

10. Linderoth, J.T., Lodi, A.: MILP Software. In: Cochran, J.J. (ed.) Wiley Ency-
clopedia of Operations Research and Management Science, vol. 5, pp. 3239–3248.
Wiley, Chichester (2011)

11. Lodi, A.: MIP computation. In: Jünger, M., Liebling, T.M., Naddef, D.,
Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.)
50 Years of Integer Programming 1958-2008, pp. 619–645. Springer, Heidelberg
(2009)

12. Pesant, G., Quimper, C.-G.: Counting solutions of knapsack constraints. In: Perron,
L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 203–217. Springer,
Heidelberg (2008)

13. Trick, M.A.: A Dynamic Programming Approach for Consistency and Propagation
for Knapsack Constraints. Annals of Operations Research 118, 73–84 (2003)

14. Pryor, J., Chinneck, J.W.: Faster Integer-Feasibility in Mixed-Integer Linear Pro-
grams by Branching to Force Change. Computers & OR 38, 1143–1152 (2011)

15. Wesselmann, F., Suhl, U.H.: Implementation techniques for cutting plane manage-
ment and selection. Technical Report Universität Paderborn (2007)

16. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered
search heuristics. Constraints 14, 392–413 (2009)

Precedence Constraint Posting for Cyclic

Scheduling Problems

Michele Lombardi, Alessio Bonfietti, Michela Milano, and Luca Benini

DEIS, University of Bologna,
Viale del Risorgimento 2, 40136 Bologna, Italy

{michele.lombardi2,alessio.bonfietti,michela.milano,luca.benini}@unibo.it

Abstract. Resource constrained cyclic scheduling problems consist in
planning the execution over limited resources of a set of activities, to be
indefinitely repeated. In such a context, the iteration period (i.e. the dif-
ference between the completion time of consecutive iterations) naturally
replaces the makespan as a quality measure; exploiting inter-iteration
overlapping is the primary method to obtain high quality schedules. Clas-
sical approaches for cyclic scheduling rely on the fact that, by fixing the
iteration period, the problem admits an integer linear model. The op-
timal solution is then usually obtained iteratively, via linear or binary
search on the possible iteration period values. In this paper we follow an
alternative approach and provide a port of the key Precedence Constraint
Posting ideas in a cyclic scheduling context; the value of the iteration pe-
riod is not a-priori fixed, but results from conflict resolution decisions.
A heuristic search method based on Iterative Flattening is used as a
practical demonstrator; this was tested over instances from an industrial
problem obtaining encouraging results.

Keywords: Precedence Constraint Posting, Resource Constrained
Scheduling, Cyclic Scheduling.

1 Introduction

Cyclic scheduling problems arise in a wide variety of real-life contexts, when a
set of activities have to be repeated an very large, possibly unknown number of
times. In this case a schedule cannot be represented by enumerating start times
of all activities, as this would require a huge amount of storage, and a convenient
abstraction is to assume that activities will execute an infinite number of times
following a periodic schedule. In this context the notion of optimality is related to
the period of the schedule. A minimal period corresponds to the highest number
of activities carried out in average over a large time window.

One of the most successful approaches for solving non cyclic resource con-
strained scheduling problems is Precedence Constraint Posting (PCP, [23,5,19])
that basically adds precedence constraints to the project graph to avoid resource
over-usage. In this paper, we explore how to apply the PCP solution method
to the cyclic scheduling problems. Porting the key PCP concepts to the cyclic

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 137–153, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

138 M. Lombardi et al.

scheduling domain is however a non-trivial task and requires a number of gen-
eralizations. We provide basic definitions concerning resource profiles, Minimal
Critical Sets (MCS) and Resolvers that apply to the cyclic case.

As a second contribution of the paper, we implement a PCP solver by porting
to the cyclic domain the Iterative Flattening method [4,3]; this is a heuristic
algorithm that repeatedly attempts to build improving solutions by iteratively
selecting a MCS and resolving the conflict through the addition of a precedence
constraint. We have experimented the proposed approach on a set of industrial
benchmarks taken from the field of loop scheduling problems extracted by a
compiler. The results are very promising (despite the simplicity of this first
implementation) and open perspectives for future improvements.

2 Problem Description

Cyclic Scheduling can be considered as an extension of classical Resource Con-
strained Project Scheduling (RCPSP), as it involves deciding the execution order
of a set of activities subject to temporal and resource constraints; unlike in the
RCPSP, however, the set of activities is indefinitely repeated over time. The reg-
ularity of the process flow allows one to partially overlap consecutive executions
of the activity set, allowing better resource utilization.

Formally, the problem can be defined over a directed graph (referred to as
Project Graph) G = 〈A, E〉, where A is the set of activities ai and E is a
set of arcs (ai, aj), representing temporal dependencies. We refer as iteration
to a full execution of the graph; the makespan is the time span between the
start of the first activity and the end of the last one in a single iteration;
the period is the difference between the start time of the same task in consecutive
iterations; the completion frequency is the inverse of the period. Figure 1A shows
an example of a Project Graph.

We assume activities are non-interruptible and have fixed duration di. Simi-
larly, a minimum time lag dij is associated to each arc and constrains the min-
imum time distance between the end of ai and the beginning of aj in specific
iterations (say iteration k and h); in particular a parameter δij known as height
or delay specifies the iteration offset (i.e. the difference h − k). Formally, let sk

i

be the start time of ai in iteration k, then an arc (ai, aj) enforces:

s
k+δij

j ≥ sk
i + di + dij (1)

A

a0

a2

a3

a1
a0

a1

a2

a3

(a0, a1)
(a0, a2)
(a2, a3)
(a3, a2)

di δij

B

1
7
1.5
1.5

dij

0
0
0
1

0
0
0
0

C

a0

a1

a2

a3

ri0

0
1
1
0

c0=2

δij=1

Fig. 1. A simple Project Graph and related data

Precedence Constraint Posting for Cyclic Scheduling Problems 139

it is convenient to think about the precedence constraint and the delay as iter-
ation k of ai “providing input” to iteration k + δij of activity aj . Unlike many
approaches, we assume δij ∈ Z, rather than ∈ N. Figure 1B reports durations,
delay and time lag values for the Project Graph on the left; note all dij are 0 for
sake of simplicity.

The presence of delay allows cycles to be consistently defined in the project
graph, since some of the precedence constraints along the circular path will target
activities from different iterations; in general, any cycle with a strictly positive
sum of arc delay admits a feasible assignment of start times. As an example,
the graph from Figure 1 contains a single cycle (involving nodes a2 and a3),
with total delay equal to 1 (as δ32); if no delay was specified, there would be
no chance to satisfy the cyclic dependence. Note that cyclic scheduling enables
cycle treatment, but does not require the graph to actually contain cycles.

Each activity ai requires some non-negative amount rih of resource rh from a
set R (see Figure 1C). Each resource has limited capacity ch, so that the total
consumption due to activities from any iteration cannot exceed ch at any point
of time. Formally:

∑
i,k : sk

i ≤t<sk
i +di

rih ≤ ch ∀ time instant t, ∀rh ∈ R (2)

The problem objective is to minimize the average period; given a reference ac-
tivity ai, this can be formally defined as:

λi = lim
k→∞

∑k
h=1 sh

i − sh−1
i

k
= lim

k→∞
sk

i

k
(3)

If no activity is unnecessarily delayed, the choice of ai does not influence the
result [13], so that the period has no dependence on i; hence, we always write λ
in the followings. Each cycle L in the graph sets a lower bound on the average
period; this is given by the so-called cycle ratio, i.e. the total cycle length over
the total delay. Therefore, the Maximum Cycle Ratio MCR (or iteration bound
[22]) of the graph provides a inherent bound on the minimum achievable period;
let this be λ∗:

λ∗ = max
L∈G

∑
(ai,aj)∈L di + dij∑

(ai,aj)∈L δij
(4)

the MCR value can be computed in polynomial time by means of specialized
algorithms [7,12]; for a graph with n nodes and m arcs the typical runtime is
O(nm log n) or worse. The λ∗ value for the graph in Figure 1 is given by the
only cycle contained in the graph: λ∗ = (d2 + d2,3 + d3 + d3,2)/(δ2,3 + δ3,2) = 3.

2.1 Cyclic and Periodic Scheduling

A solution to a cyclic scheduling problem (i.e. a schedule) is an assignment of
start times to each activity ai in each iteration k; as a consequence, a schedule

140 M. Lombardi et al.

has in principle infinite size. A cyclic schedule is periodic if the start times follow
a static pattern, repeated with a fixed period; in such case sk

i can be rewritten
as follows:

sk
i = s0

i + k · λ (5)

where λ has the meaning from Equation (3). In this section we disregard resource
constraints (they will be considered later on); under such assumption, periodic
schedules have two fundamental properties: 1) there exists a feasible schedule if
and only if there exists a periodic schedule [21,14]; 2) the periodic schedule with
the minimum period has λ = λ∗ and is therefore optimal [6]. From now on, we
focus on periodic schedules and on feasible assignments for the start times at
iteration 0; for sake of simplicity, the notation si will be used in place of s0

i .
The problem of finding an optimal periodic schedule satisfying all temporal

constraints can be formalized as follows:

(P0) min λ

subject to: sj + δijλ ≥ si + di + dij ∀(ai, aj) ∈ E (6)
si ≥ 0 ∀ai ∈ A

λ ≥ 0

where Constraints (6) are derived by combining Equation (1) and (5). Note
that P0 is a linear program and could be solved in principle via any general
LP technique. It is however more common (and efficient) to use dedicated MCR
computation algorithms (see [16,12,7]). Solving problem P0 provides no consis-
tency guarantee on resource constraints; as a matter of fact, handling resource
constraints is usually the toughest issue in any cyclic scheduling method.

3 Related Work

The cyclic scheduling literature mainly arises from industrial and computing
contexts. The former includes mass production, chemical and hoist scheduling
problems, the latter includes parallel processing, software pipelining and data-
flow mapping problems in embedded systems. While there is a considerable body
of work on cyclic scheduling in the OR literature, the problem has not received
much focus from the AI community ([10] is one of the few approaches). A subclass
of cyclic scheduling (targeted by most of the existing approaches) is the so-called
modulo scheduling [20], where the start times and the period λ are required to
assume integer values (this is not the case for our method).

Several heuristic and complete approaches have been proposed for cyclic
scheduling. A heuristic algorithm called iterative modulo scheduling is proposed
in [25] and generates near-optimal schedules. An interesting heuristic approach
(SCAN) based on a time-indexed ILP model is presented in [2]. Both methods
compute a schedule for a single iteration, which is characterized in terms of its
makespan and period. The makespan dictates the size of the model, so that
schedules with a relatively small period could be difficult to compute due to a
possibly high makespan. Our approach is not time indexed and does not suffer
from this issue.

Precedence Constraint Posting for Cyclic Scheduling Problems 141

Advanced complete formulations are proposed in [11] by Eichenberger and in
[8] by Dupont de Dinechin; both the approaches are based on a time-indexed
ILP model; the former exploits a decomposition of start times to overcome the
issue with large makespan values, while the latter has no such advantage, but
provides a better LP relaxation. In [1] the authors report an excellent overview
of the state-of-the-art formulations and present a new model issued from Danzig-
Wolfe Decomposition. Other good overviews of complete methods can be found
in [14,9].

To the best of our knowledge, most of the state-of-the-art approaches are
based on iteratively solving resource subproblems obtained by fixing the period
value; fixing λ allows solving the resource constrained cyclic scheduling problem
via an integer linear program (while modeling λ as an explicit decision variable
yields non-linear models). The obvious drawback is that a resource constrained
scheduling problem needs to be repeatedly solved for different λ values. In this
paper, we provide an alternative method which does not require the iterative
solution of NP-hard subproblems.

4 Cyclic Precedence Constraint Posting

Precedence Constraint Posting (PCP, see [23,5]) is a scheme for solving schedul-
ing problems with limited resources. Roughly speaking, the method relies on a
constraint model to ensure temporal consistency, while resource constraints are
tackled by iterative 1) identification of possible conflicts and 2) their resolution
through the addition of temporal constraints, so that resource constraints are
progressively turned into temporal constraints. A solution is provided in the form
of a conflict free, temporal consistent augmented graph. The main idea roots back
to [18,17] from the stochastic scheduling domain and was successfully applied in
an AI context in [4,3,24,19].

The method is very appealing in a cyclic context, where an optimal solution
can be computed in polynomial time (although less efficiently that in non-cyclic
scheduling) if no resource constraint is taken into account. This section describes
how the key PCP concepts can be generalized to a cyclic scheduling context.

4.1 Concurrency and Requirement Functions

A resource conflict arises when the cumulative usage of overlapping tasks ex-
ceeds the capacity; in cyclic scheduling, computing the resource usage requires
to take into account overlapping iterations. Figure 2A shows a periodic schedule
for the graph from Figure 1; as one can observe, not only activities from differ-
ent iterations may overlap, but different iterations of the same activity may be
running at the same time instant. In the figure, the schedule period is 3, while
the makespan is marked by the end of a1 and has value 8.

We devise a formal characterization of the resource usage of an activity, by
restricting focus to an arbitrary λ length time span [k · λ, (k + 1) · λ[, with
k sufficiently large for the schedule to have entered a fully periodic behavior:
this always happens when (k + 1) · λ is greater than the schedule makespan

142 M. Lombardi et al.

0 1 3 6

0 λ

rik
λ
di.

rik
λ
di.

si si + di

A B C

a0
0 a1

0

a2
0 a3

0

a0
1 a1

1

a2
1 a3

1

a0
2 a1

2

a2
2 a3

2

a0
3 a1

3

a2
3

a1
0

a1
1

a0
2

a2
2

a1
2

Fig. 2. A) a periodic schedule; B) a periodic schedule on the modular interval; C)
modular requirement function

(see Figure 2B). Due to periodicity, the interval is representative of the steady
schedule behavior; in the followings, it is referred to as modular interval [0, λ[. A
local start time within the modular interval can be associated to each activity
via decomposition; namely, we can write:

si = s̄i + βi · λ (7)

with s̄i in [0, λ[and βi ∈ N; equivalently, we have s̄i = {si/λ} · λ, where the
notation {·} denotes the fractional part; in the example from Figure 2B, we have
s̄0 = 0, s̄1 = s̄2 = 1, s̄3 = 2.5. In the followings, we refer to s̄i as modular start
time of ai, because of the analogy between the start time decomposition and the
modulo operation over Z. Since si represents the start time of iteration 0 of ai,
the βi value in Equation (7) refers to the number of full periods elapsed before
ai is scheduled for the first time; in the schedule from Figure 2 all βi are zero,
since all si are in the interval [0, λ[. Similarly, we can define a modular end value:

ēi =
{

si + di

λ

}
· λ or, equivalently: si + di = ēi + ηi · λ (8)

where ηi has a similar meaning to βi; in Figure 2 we have η1 = 2, η3 = 1, while
all other ηi values are 0. Observe that ēi can be higher or lower than s̄i, as one
can see in Figure 2.

The number of concurrent executions of each activity within a period can
be characterized by relying on modular start/end values; in particular, in the
interval [0, λ[, at least �di/λ� iterations of activity ai are always executing. An
extra iteration should be added if the time instant under analysis falls between
the modular start and the modular end. Formally, we introduce a concurrency
function #ai(t) with values in the time interval [0, λ[and such that:

#ai(t) =
⌊

di

λ

⌋
+ pulse(ai, t) (9)

Precedence Constraint Posting for Cyclic Scheduling Problems 143

and:

pulse(ai, t) =

{
1 if s̄i ≤ t < ēi or t < ēi < s̄i or ēi < s̄i ≤ t

0 otherwise
(10)

Function #ai(t) ranges in between �di/λ� and �di/λ� and is therefore constant
if di is an integer multiple of λ. Equation 9 shows how the concurrency function
results from the superimposition of a constant and a pulse function; the latter is
triggered by a new arrival of ai and makes a step down when a previous iteration
of ai ceases execution. The concurrency function allows a modular requirement
function r̄ik(t) to be easily defined as r̄ik(t) = rik ·#ai(t). Figure 2C provides a
pictorial representation of the requirement function. Note that for λ sufficiently
large, �di/λ� is 0, s̄i = si, ēi = si + di and r̄ik(t) boils down to the rectangular
function used in classical scheduling.

4.2 Minimal Critical Sets

In non-cyclic scheduling a Critical Set (CS) is a subset S of activities, collectively
overusing a resource rh in case of simultaneous execution. A Minimal Critical
Set (MCS) is CS such that none of its proper subsets is a CS. A precedence
constraint posted over a pair of activities ai, aj in the same MCS prevents the
conflict: hence, by focusing on MCS, one can avoid adding useless precedence
constraints. In a cyclic context, several iterations of the same activity may be
running concurrently; therefore, we propose to define an MCS as a multiset, i.e.
a set where objects can appear several times.

Definition 1 (Generalized Critical Set and Minimal Critical Set). A
Generalized Critical Set (GCS) is a multiset M of activities in A, such that,
given the current temporal constraints:
1. card(ai, M) iterations of each activity ai may overlap
2. the set of overlapping executions causes an over-usage:

∃rh | ∑ai∈M rih · card(ai, M) > ch

A Generalized Minimal Critical Set is a multiset M such that none of its proper
sub-multisets is a GCS.

where card(ai, M) gives the cardinality of ai in M ; we write ai ∈ M iff
card(ai, M) > 0; we write M ′ ⊆ M iff, ∀ai ∈ M ′, it holds card(ai, M

′) ≤
card(ai, M). In the followings, we always use the term Critical Set and Minimal
Critical Set in the generalized sense. With reference to Figure 2, {a1, a1, a1, a2}
is a CS, while {a1, a1, a2} or {a1, a1, a1} are MCS; note that a MCS may even
consist of several iterations of a single activity.

4.3 MCS Resolvers

In a PCP approach, critical sets are cleared by adding carefully designed con-
straints, referred to as resolvers. Specifically, we adopt the following definition,
holding for both classical and generalized MCS:

144 M. Lombardi et al.

Definition 2 (Resolver). Let M be an MCS; a resolver for M is any temporal
constraint ρ which prevents the multiset from satisfying Definition 1.

A simple pairwise precedence constraints (i.e. added arc) is an example of valid
resolver in non-cyclic scheduling; other types of constraints could be employed
as well [15]. A good resolver should allow to efficiently test consistency after
it is added to the temporal model: this is the reason why simple precedence
constraints are by far the most common resolvers in the literature. In second
place, it should be possible to encode an optimal solution as a set of resolvers,
so as not to loose the chance of achieving optimality.

By direct application of Definition 2 we get a necessary and sufficient condi-
tion, defining a resolver in the most general form:

∀t ∈ [0, λ[:
∨

ai∈M

[#ai(t) < card(ai, M)] (11)

which basically states that for each time instant t in the modular interval, at
least one of the concurrency functions for activities in the MCS must be strictly
less then the cardinality in M . Equivalently:

∀t ∈ [0, λ[:
∑

ai∈M

#ai(t) <
∑

ai∈M

card(ai, M) (12)

Unfortunately, Constraint 12 does not allow an efficient consistency check, hence
a suitable decomposition should be devised. Observe that:

Statement 1. Let L be a cycle; let us refer as AL to the set of activities it
includes and as ΔL to its total delay, then L does not allow more than ΔL

iterations of activities in AL to run concurrently; the same restriction cannot be
achieved by employing fewer arcs or a larger delay.

A formal proof is omitted due to lack of space, but the statement follows quite
intuitively from the semantic of arc delays described in Section 2. Now:

Theorem 1. Given a feasible schedule according to Constraint (12), it is possi-
ble to identify a collection L of unary and binary loops L such that any feasible
schedule modification according to L is feasible according to Constraint (12).

Proof. It is sufficient to prove that any infeasible schedule modification accord-
ing to Constraint (12) is infeasible according to precedence constraints in L. For
each activity ai, let us introduce a self-loop with delay δii = �di/λ�; then, for
each pair of activities ai, aj such that ai precedes aj in the modular interval (i.e.
ēi ≤ s̄j), we introduce a binary cycle with δij = βj − ηi and δji = βi − ηj +1; let
the collection of those cycles be L. By construction, all precedence constraints
enforced by L are satisfied. In order to violate Constraint (12), any modification
of the target schedule should either increase the amount of overlapping execu-
tions for a single activity ai or break a modular precedence relation; due to
Statement 1, this would respectively result in the violation of a unary or binary
loop constraint in L. ��

Precedence Constraint Posting for Cyclic Scheduling Problems 145

Basically, Theorem 1 shows that a properly designed binary or unary loop “cov-
ers” part of the feasible space of Constraint (12). By iterating the process for
the infinitely many possible valid schedules according to (12), we obtain:

Theorem 2. Constraint (12) is equivalent to a infinite-size disjunction of unary
and binary cycles defined over activities in M .

Hence, we can focus on resolvers formulated as unary or binary cycles with-
out loosing the chance of achieving optimality; moreover, adding a cycle to the
Project Graph still allows to efficiently compute the best achievable period.

Unary resolver: A unary resolver L over ai with ΔL < card(ai, M) delay can
be built by adding a self-arc (ai, ai) with δii = card(ai, M) − 1; any smaller δii

value would unnecessarily over-constrain the partial solution.

Binary resolver: Building a binary resolver over two activities ai and aj requires
adding arcs (ai, aj), (aj , ai) and deciding their delay value so that:

δij + δji = card(ai, M) + card(aj , M) − 1 (13)

where we recall δij , δji ∈ Z. This means that binary cycle resolvers are parametric
and an infinite number of possible resolvers can be defined between a pair of
activities. In this work we use a simple heuristic to decide the delay distribution;
a deeper investigation of the parameter space is left for future work.

5 Implementing the Cyclic PCP

5.1 Cyclic Iterative Flattening

As a practical demonstrator for the framework proposed, we realized a heuristic
PCP solver for period minimization in resource constrained cyclic scheduling. In
particular, our solver is a porting of the Iterative Flattening method to cyclic
scheduling.

Iterative Flattening (iFlat) is a heuristic solution method for makespan min-
imization on the RCPSP. The approach is introduced in [4,3] and makes use of
a Temporal Constraint Network to enforce consistency of precedence and time
window constraints. In the basic version, iFlat performs a fixed number of it-
erations; during each of them, a solution is tentatively built by repeatedly 1)
selecting a MCS and 2) resolving the conflict through the addition of a prece-
dence constraint; no backtracking is performed. The MCS and resolver selection
is randomized so that each iteration explores a different portion of the search
space. MCS identification is done [24,23] either by computing so-called resource
usage envelopes, or by scanning the contention peaks arising in the earliest start
time schedule (computed by disregarding resource constraints).

The main scheme of our approach matches that of basic iFlat and is reported
in Algorithm 1; as one can see, we adopt the peak based MCS identification
procedure. Unlike the original iFlat, the presented approach lacks support for
time windows, deadlines and maximum time lag constraints, which is planned
for future research. In the following, each step will be further detailed.

146 M. Lombardi et al.

Algorithm 1. (Cyclic) Iterative Flattening
Input: a problem instance defined over a graph G = 〈A, E〉; a number of iterations n
Output: a conflict free augmented graph

1: for i = 0 to n-1 do
2: while at least an MCS exists do
3: compute contention peaks and sample an MCS
4: sample a resolver for the MCS
5: add the resolver and check temporal consistency
6: if the current λ∗ improves the best one then
7: store the current solution and set current λ∗ as threshold
8: return the best solution

5.2 Temporal Consistency Check

Since we do not consider time windows or deadline constraint on specific activ-
ities, checking temporal consistency amounts to compute an optimal (resource
unaware) periodic schedule and test whether the resulting period λ∗ is less than
the current threshold. We recall that an optimal schedule is obtained by solving
problem P0 from Section 2.1 via MCR computation.

Our MCR algorithm is a variant of the cycle class, as described in [12].
The key idea is that, for any fixed λ0, P0 becomes a longest path computation
problem on a cyclic graph; in detail, each arc (ai, aj) has a modified length
equal to di + dij − δij · λ0. At the end of the computation, the longest path
to ai defines the activity earliest start value (i.e. si). By starting from a guess
value λ0 ≤ λ∗ (i.e. super-optimal) the longest path computation either proves
feasibility (hence we deduce λ0 = λ∗) or identifies an infeasible cycle; in this
case, the cycle provides a new lower bound λ1 > λ0, which can be used as a new
guess to reiterate the process.

Some heuristics can be employed to find a good initial period guess. Here,
however, we simply start with λ0 = 0; whenever a resolver is added and a new
schedule needs to be computed (step 5 from Algorithm 1), we use the λ∗ of the
current graph to prime the process, making the computation incremental. This is
a peculiar advantage of the cycle algorithm class, which could not be exploited
with the (otherwise faster) algorithm by Young-Tarjan-Orlin [26].

The longest path computation can be performed via Bellmann-Ford like al-
gorithms1; specifically, the method we use is reported in Algorithm 2 and is
designed to avoid repeated traversals of graph cycles. The procedure keeps a
set of nodes to be visited (referred to as Q); for each activity ai, the algorithm
also stores the set V (ai) of tasks on the critical path to ai. The output is an
assignment of start times si and a period bound λ1 (in case of feasibility) or
the bound alone (in case of infeasibility). Algorithm 2 is initialized by setting
all start times to 0; the corresponding critical paths contain no node and have 0
delay (line 1); all tasks are enqueued to be processed (Q ← T).

At each step an arbitrary task is picked from the Q set (line 5); the choice
does not compromise correctness; here, we simply pick the lowest index activity
1 The simpler Dijkstra algorithm is not an option due to the presence of cycles.

Precedence Constraint Posting for Cyclic Scheduling Problems 147

Algorithm 2. Find Start Times (longest paths)
Input: the current augmented graph and λ guess λ0

Output: a lower bound on λ∗ and an assignment of start times
Data structures:
- ∀ai ∈ A: V (ai) is the set of nodes on the critical path
- ∀ai ∈ A: si is the start time of iteration 0
- ∀ai ∈ A: δi is the delay of the current critical path to ai

- Q is the set of activities to be visited
- λ1 is the period lower bound being computed

1: ∀ai ∈ A: V (ai) ← ∅, si ← 0, δi ← 0
2: Q ← A, λ1 ← 0
3: while Q �= ∅ do
4: pick an arbitrary activity ai from Q
5: Q ← Q \ {ai}, V (ai) ← V (ai) ∪ {ai}
6: for all arcs (ai, aj) ∈ E having ai as source do
7: if aj is not in V (ai) then
8: if sj < si + di + dij − δij · λ0 then //ai is on the critical path to aj

9: sj ← si + di + dij − δij · λ0 //update the critical path to aj

10: δj ← δi + δij //update total delay to aj

11: V (aj) ← V (ai) //transfer set of visited nodes
12: Q ← Q ∪ {aj} //enqueue aj

13: else //a cycle L has been identified
14: let ΔL := δi − δj + δij //total delay for cycle L
15: let DL := si + di + dij − sj + (δi − δj) · λ0 //total length of cycle L
16: λ1 ← max

(
λ1, DL/ΔL

)
//update bound with cycle ration of L

17: if λ1 > λ0 then
18: return the bound λ1 and no start time
19: else
20: return all the si and the bound λ1

in Q. Then, ai is marked as part of longest path to itself: this is needed to deal
with self-loops in the Project Graph.

Next, all the successors aj of task ai are processed; if the successor is not part
of the longest path to ai (line 7) and if arc (ai, aj) sets a stronger bound on the
start time sj (line 8), then: 1) sj is updated, 2) the total delay δj is updated
and 3) the longest path to aj becomes V (ai); finally, aj is marked as an activity
to be processed (at line 12). If aj is found to be part of the longest path to ai

(line 13), a loop L has been identified; in such a case: 1) either the constraint
corresponding to arc (ai, aj) is feasible (and the current λ0 guess is confirmed);
or 2) the constraint is infeasible, and we can determine the minimum λ which
would provide feasibility.

This is done by computing the Cycle Ratio of the identified loop; in particular,
the total duration DL of activities and arcs in the loop can be computed as
shown at line 15; the total delay on the loop is referred to as ΔL, hence the
cycle ratio is DL/ΔL (line 16) and the bound λ1 is updated. If at the end of
the process (when Q becomes empty) λ1 is higher than the current throughput
guess λ0 an infeasibility has been detected and the algorithm repeats (line 18).
Otherwise, all nodes have been assigned a feasible start time and a valid lower

148 M. Lombardi et al.

bound on the period has been computed. Minor modifications are done in the
actual implementation to improve the runtime; as for any other cycle algorithm,
known bounds on the asymptotic complexity are very loose.

5.3 Detecting Contention Peaks and MCS

Here, we define a contention peak as a maximal set of overlapping iterations
of activities in the current schedule, collectively overusing a resource rk. Each
contention peak is a multiset and corresponds to a (Generalized) CS occurring
in a specific schedule. In our algorithm, we choose the (Generalized) MCS to be
resolved by: 1) identification of all the contention peaks for each resource rk; 2)
extraction of an MCS from each peak by randomly reducing the cardinality of
activities in the multi-set, until minimality is met; 3) choosing an MCS from the
whole pool uniformly at random. Of course some clever heuristics may be used
to bias the choice towards promising MCS: this is left for future research.

Our peak detection procedure (in Algorithm 3) is an extension of the one
presented in [23] for non-cyclic schedules; the method operates on the modular
interval [0, λ[and is designed to take into account the peculiar profile of the
modular requirement function r̄ik(t), consisting of a constant and a pulse com-
ponent (see Equation 9 in Section 4.1). The main idea is to focus on the maximal
overlapping of the pulse functions; in Figure 3 one can check how the individual
modular requirement functions r̄1,0 and r̄2,0 contribute to the usage profile of
resource r0 in the modular interval [0, λ[in our example problem. Peaks in the
resource usage are due to the pulse components; specifically, the schedule has a
single maximal peak at time 1.

The peak detection algorithm processes activities by increasing modular start
time (i.e. pulse start time) and keeps track via a set X of pulses currently in
execution. New pulses are added to X when they start (i.e. s̄i = t, line 4) and
removed from X when they are over (i.e. ēi ≤ t). The X set is initialized before
the main loop so as to include pulses that cross the λ boundary (i.e. such that
ēi < s̄i, in line 2). A set Rm is used to prevent the crossing activities from
being removed twice from X . A peak is collected whenever some activity needs
to be removed from X ; in such a case, the peak contains each activity with the
cardinality specified by the value of the concurrency function #ai(t). The final
step of the algorithm always processes time λ and collects the last peak.

Fig. 3. A,B) effect of combining different usage functions; C) activity pulses

Precedence Constraint Posting for Cyclic Scheduling Problems 149

Algorithm 3. (Cyclic) Peak Detection
Input: a schedule and a target resource rk

Output: a list of detected peaks
Data structures:
- Q: vector of activities requiring rk

- X: set of executing activities in execution at the current time instant
- Rm: set of activities removed from X

1: sort activities in Q by increasing modular start time s̄i

2: X = set of activities in Q such that ēi < s̄i

3: for i = 0 to |Q| do
4: if i < |Q| then ai = i-th activity in Q; current time t = s̄i

5: else current time t = λ
6: if there is any activity aj ∈ X such that ēj ≤ t and aj /∈ Rm then
7: if

∑
aj∈Q r̄jk(t) > ck then

8: build a peak with all activities aj in Q, each with cardinality #aj(t)
9: remove from X all activities aj such that ēj ≤ t and aj /∈ Rm

10: add to Rm all the removed activities
11: if i < |Q| then add ai to X
12: return the list of detected peaks

5.4 Sampling and Adding a Resolver

Once an MCS M is selected, we sample a binary or unary resolver uniformly at
random. The original iFlat algorithm can exploit temporal constraint propaga-
tion to identify trivially infeasible resolvers; since our temporal model does not
provide any actual propagation mechanism (i.e. there is no time window for any
activity), the sampled resolver is tested with one-step look ahead: in case the λ∗

value of the resulting graph is higher then the current threshold, the resolver is
discarded and a new one is sampled. In the worst case, the process stops when
there are no more resolvers and the current algorithm iteration ends.

As described in Section 4.3, cyclic resolvers are either unary or binary cycles.
While the delay distribution for a unary resolver is fixed; binary resolvers have
parametric delay. Here, we use a heuristic to deterministically choose a distribu-
tion, given an ordered pair of activities ai, aj . The main underlying idea is that
a binary cycle prevents the two involved activities ai, aj from simultaneously
reaching a maximum concurrency; intuitively, this means to prevent the pulse
components from the corresponding #ai(t) function from overlapping. This can
be done by either forcing ēi to “precede” s̄i, or vice-versa.

We recall the end of ai pulse is associated to the iteration number ηi, while
the beginning of aj pulse to the iteration number βj . In our approach, when
posting a resolver on the ordered pair ai, aj we always heuristically set the delay
of the added arc (ai, aj) to:

δij = βj − ηi (14)

intuitively, this amounts to force iteration βj of aj to wait for the end of iter-
ation ηi of ai. The δji delay is fixed according to Equation (13). Figure 3D shows

150 M. Lombardi et al.

the β and η values for (the pulses of) a1 and a2; their computation is done as
described in Section 4.1. When posting a resolver between a1 and a2 for the MCS
{a1, a1, a2}, our heuristics would set δij to 0 − 2 = −2 and δji to 2 − δij = 4.

5.5 Experimental Results

The cyclic iFlat approach has been implemented in C++ and tested on a bench-
mark consisting of industrial problems from the instruction scheduling domain
[8]. In particular, the instances represent loop scheduling problems extracted by
the compiler for the ST200 processor, by STMicroelectronics; each activity rep-
resent an instruction, requiring one or more CPU components for its execution.
All instructions have unary duration; the maximum δij on the whole benchmark
is 4; the maximum dij is 3. With the objective to make the benchmark more
challenging, in [1] the authors replaced the original resource consumption with
a random number, thus providing a modified data set.

The benchmark is employed in [1] to perform a through comparison of ILP
based complete approaches; given a large time limit (604800 seconds) the com-
pared solvers found the optimal solution for almost all the instances. Our exper-
iment focus is on assessing how close to the known optima the PCP heuristics
can go; to this end, it must be mentioned that in the original problem the start
times and the period were required to be integer (i.e. it was actually a modulo
scheduling problem). Our approach does not make such an assumption and has
in principle the chance to find better solutions; nevertheless, since all durations
are unary, the optimal values found in [1] are a pretty reliable estimate of the
minimal period values our heuristics could ever achieve.

All experiments are performed on an Intel Core 2 T7200, by running 1200
iFlat iterations for each instance. Table 1 shows the result of the evaluation for
both the data sets (industrial and modified). Next to the instance name, the
number of activities and arcs is reported. Then, for each data set, the table
shows the optimal λ value (for the corresponding modulo scheduling problem),
the best λ found by our heuristics within one second and the sequence number
of the iteration when such solution was found. The table content is completed
by the best overall λ, the iteration and the time when it was found, the total
solution time. Some of the instances from the original paper are missing, due
to problems during the conversion to our solver input format. For the instances
reporting a “—” in the opt column an optimal solution was not found by the
reference ILP solvers.

A number in bold face highlights the cases where our heuristics hits the actual
optimum; in general cyclic iFlat obtains very good results, reaching optimal or
close to optimal solutions within 1 second. In a few cases (e.g. gsm-st231.14) the
heuristics appears to beat the optimal solver: this is only a consequence of the
integrality requirement assumed by the complete approach used as a reference.
The modified instances are remarkably more difficult than their counterparts

Precedence Constraint Posting for Cyclic Scheduling Problems 151

Table 1. Results for the benchmark from [1]; ∗: the reported optimum is for for the
modulo scheduling problem, where the start times and the period are constrained to
be integer

INDUSTRIAL INSTANCES MODIFIED INSTANCES
1 sec best 1 sec best

inst acts arcs opt∗ λ it λ it time tot. time opt∗ λ it λ it time tot. time

adpcm-st231.1 86 405 21 22.00 13 21.00 121 4.17 39.04 —
adpcm-st231.2 142 722 40 43.00 20 41.00 158 6.38 40.46 —
gsm-st231.2 101 462 26 27.00 5 26.00 98 3.89 47.39 —
gsm-st231.6 30 130 7 7.00 19 7.00 19 0.05 4.02 27 27.00 63 27.00 63 0.37 7.26
gsm-st231.7 44 192 11 11.00 4 11.00 4 0.03 9.58 41 41.00 53 41.00 53 0.88 18.98
gsm-st231.9 34 154 28 28.00 1 28.00 1 0.00 0.35 32 32.00 59 32.00 59 0.22 3.63
gsm-st231.10 10 42 4 4.00 0 4.00 0 0.00 0.26 8 8.00 41 8.00 41 0.01 0.33
gsm-st231.11 26 137 20 9.00 0 9.00 0 0.00 0.08 24 24.00 4 24.00 4 0.01 4.58
gsm-st231.12 15 70 8 8.00 40 8.00 40 0.02 0.63 13 13.00 65 13.00 65 0.03 0.63
gsm-st231.13 46 210 19 19.00 0 19.00 0 0.00 0.57 43 43.00 24 43.00 24 0.44 22.54
gsm-st231.14 39 176 10 9.50 17 9.50 17 0.12 9.21 33 36.00 17 35.00 774 9.96 15.42
gsm-st231.15 15 70 8 8.00 3 8.00 3 0.00 0.63 12 12.00 585 12.00 585 0.28 0.62
gsm-st231.16 65 323 16 16.00 15 16.00 15 0.52 36.48 —
gsm-st231.17 38 173 9 9.00 20 9.00 20 0.14 8.21 33 34.00 3 33.00 262 2.80 12.46
gsm-st231.19 19 86 8 8.00 14 8.00 14 0.01 0.87 15 15.00 149 15.00 149 0.25 1.79
gsm-st231.20 23 102 6 5.33 186 5.33 186 0.52 3.35 20 20.00 48 20.00 48 0.17 4.06
gsm-st231.21 33 154 18 18.00 1 18.00 1 0.00 0.33 30 29.00 211 29.00 211 0.72 3.92
gsm-st231.22 31 146 18 18.00 1 18.00 1 0.00 0.30 29 29.00 36 29.00 36 0.15 3.10
gsm-st231.25 60 273 16 16.00 38 16.00 38 0.42 13.12 —
gsm-st231.29 44 192 11 11.00 4 11.00 4 0.03 9.45 42 42.00 6 42.00 6 0.17 19.26
gsm-st231.30 30 130 7 7.00 19 7.00 19 0.05 4.02 25 26.00 0 25.00 461 2.88 7.52
gsm-st231.31 44 192 11 11.00 4 11.00 4 0.02 9.58 39 41.00 14 40.00 284 4.66 18.94
gsm-st231.32 32 138 15 15.00 0 15.00 0 0.00 0.10 30 30.00 13 30.00 13 0.05 8.11
gsm-st231.33 59 266 15 15.00 11 14.50 324 3.06 11.25 —
gsm-st231.34 10 42 4 4.00 2 4.00 2 0.00 0.25 7 7.00 82 7.00 82 0.03 0.32
gsm-st231.35 18 80 6 6.00 13 6.00 13 0.01 0.67 14 15.00 33 14.00 1109 1.07 1.15
gsm-st231.36 31 143 10 10.00 28 10.00 28 0.05 1.99 24 27.00 8 26.00 757 3.56 5.77
gsm-st231.39 26 118 8 8.00 10 8.00 10 0.01 1.84 21 22.00 105 22.00 105 0.43 4.79
gsm-st231.40 21 103 10 10.00 17 10.00 17 0.02 1.13 17 17.00 32 17.00 32 0.06 2.00
gsm-st231.41 60 315 18 20.00 54 18.00 139 2.06 17.75 —
gsm-st231.42 23 102 6 5.33 186 5.33 186 0.51 3.31 18 19.00 109 18.00 882 2.65 3.69
gsm-st231.43 26 115 8 9.00 8 9.00 8 0.01 0.16 20 22.00 52 21.00 1153 1.93 2.01

and set tougher challenges to iFlat, which nevertheless obtains pretty good re-
sults. The delay distribution heuristics from Section 5.4 seems to be a key factor
to get high quality solutions.

6 Conclusion and Future Work

The main contribution of this work is the generalization of the key PCP concepts
to the cyclic scheduling domain; in this context, the use of PCP avoids the
repeated resolution of NP-hard subproblem, which is a common trait of most
state of the art approaches. As a practical demonstrator, we implemented a
simple and yet effective cyclic version of the Iterative Flattening heuristics.

Many interesting research directions remain open: the parameter space of
binary resolvers should be characterized so as to narrow the range of possible
delay distribution choices; resource and temporal propagation techniques for
cyclic problems should be defined; effective MCS selection heuristics should be
tested and other search schemes investigated.

152 M. Lombardi et al.

References

1. Ayala, M., Artigues, C.: On integer linear programming formulations for the
resource-constrained modulo scheduling problem (2010)

2. Blachot, F., de Dinechin, B.D., Huard, G.: SCAN: A heuristic for near-optimal
software pipelining. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par
2006. LNCS, vol. 4128, pp. 289–298. Springer, Heidelberg (2006)

3. Cesta, A., Oddi, A., Smith, S.F.: Iterative Flattening: A Scalable Method for Solv-
ing Multi-Capacity Scheduling Problems. In: Proc. of AAAI/IAAI, pp. 742–747
(2000)

4. Cesta, A., Oddi, A., Smith, S.F.: Scheduling multi-capacitated resources under
complex temporal constraints. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS,
vol. 1520, p. 465. Springer, Heidelberg (1998)

5. Cesta, A., Oddi, A., Smith, S.F.: A Constraint-Based Method for Project Schedul-
ing with Time Windows. Journal of Heuristics 8(1), 109–136 (2002)

6. Chrétienne, P.: Transient and limiting behavior of timed event graphs. RAIRO
Techniques et Sciences Informatiques 4, 127–192 (1985)

7. Dasdan, A.: Experimental analysis of the fastest optimum cycle ratio and mean
algorithms. ACM Transactions on Design Automation of Electronic 9(4), 385–418
(2004)

8. de Dinechin, B.D.: From machine scheduling to VLIW instruction scheduling. ST
Journal of Research 1(2), 1–35 (2004)

9. de Dinechin, B.D., Artigues, C., Azem, S.: Resource-Constrained Modulo Schedul-
ing, ch. 18. ISTE, London (2010)

10. Draper, D.L., Jonsson, A.K., Clements, D.P., Joslin, D.E.: Cyclic scheduling. In:
Proc. of IJCAI, pp. 1016–1021. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

11. Eichenberger, A.E., Davidson, E.S.: Efficient formulation for optimal modulo sched-
ulers. ACM SIGPLAN Notices 32(5), 194–205 (1997)

12. Georgiadis, L., Golberg, A.V., Tarjan, R.E., Werneck, R.F.: An experimental study
of minimum mean cycle algorithms. In: Proc. of ALENEX. Citeseer (2009)

13. Ghamarian, A.H., Geilen, M., Stuijk, S., Basten, T., Theelen, B.D., Mousavi, M.R.,
Moonen, A.J.M., Bekooij, M.: Throughput Analysis of Synchronous Data Flow
Graphs. In: Proc. of ACSD, pp. 25–36 (2006)

14. Hanen, C., Munier, A.: Cyclic scheduling on parallel processors: an overview, ch.
4. Wiley, Chichester (1994)

15. Heilmann, R.: A branch-and-bound procedure for the multi-mode resource-
constrained project scheduling problem with minimum and maximum time lags.
European Journal of Operational Research 144(2), 348–365 (2003)

16. Howard, R.A.: Dynamic Programming and Markov Processes. Wiley, New York
(1960)

17. Igelmund, G., Radermacher, F.J.: Algorithmic approaches to preselective strategies
for stochastic scheduling problems. Networks 13(1), 29–48 (1983)

18. Igelmund, G., Radermacher, F.J.: Preselective strategies for the optimization
of stochastic project networks under resource constraints. Networks 13(1), 1–28
(1983)

19. Laborie, P.: Complete MCS-Based Search: Application to Resource Constrained
Project Scheduling. In: Proc. of IJCAI, pp. 181–186. Professional Book Center
(2005)

Precedence Constraint Posting for Cyclic Scheduling Problems 153

20. Lam, M.: Software pipelining: An effective scheduling technique for VLIW ma-
chines. In: Proc. of ACM SIGPLAN 1988, vol. 23, pp. 318–328. ACM, New York
(1988)

21. McCormick, S.T., Rao, U.S.: Some complexity results in cyclic scheduling. Math-
ematical and Computer Modelling 20(2), 107–122 (1994)

22. Parhi, K.K., Messerschmitt, D.G.: Rate-optimal fully-static multiprocessor
scheduling of data-flow signal processing programs. In: Proc. of ISCAS, vol. 217,
pp. 1923–1928. IEEE, Los Alamitos (1989)

23. Policella, N., Cesta, A., Oddi, A., Smith, S.F.: From precedence constraint posting
to partial order schedules: A CSP approach to Robust Scheduling. AI Communi-
cations 20(3), 163–180 (2007)

24. Policella, N., Smith, S.F., Cesta, A., Oddi, A.: Generating Robust Schedules
through Temporal Flexibility. In: Proc. of ICAPS, pp. 209–218 (2004)

25. Rau, B.R.: Iterative modulo scheduling: An algorithm for software pipelining loops.
In: Proc. of MICRO, pp. 63–74. ACM, New York (1994)

26. Young, N., Tarjan, R., Orlin, J.: Faster Parametric Shortest Path and Minimum
Balance Algorithms. Networks 21, 205–221 (2002)

A Probing Algorithm for MINLP with Failure

Prediction by SVM

Giacomo Nannicini1,�, Pietro Belotti2, Jon Lee3, Jeff Linderoth4,��,
François Margot1,� � �, and Andreas Wächter3

1 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
{nannicin,fmargot}@andrew.cmu.edu

2 Dept. of Mathematical Sciences, Clemson University, Clemson, SC
pbelott@clemson.edu

3 IBM T. J. Watson Research Center, Yorktown Heights, NY
{jonlee,andreasw}@us.ibm.com

4 Industrial and Systems Eng., University of Wisconsin-Madison, Madison, WI
linderoth@wisc.edu

Abstract. Bound tightening is an important component of algorithms
for solving nonconvex Mixed Integer Nonlinear Programs. A probing al-
gorithm is a bound-tightening procedure that explores the consequences
of restricting a variable to a subinterval with the goal of tightening its
bounds. We propose a variant of probing where exploration is based on it-
eratively applying a truncated Branch-and-Bound algorithm. As this ap-
proach is computationally expensive, we use a Support-Vector-Machine
classifier to infer whether or not the probing algorithm should be used.
Computational experiments demonstrate that the use of this classifier
saves a substantial amount of CPU time at the cost of a marginally
weaker bound tightening.

1 Introduction

A Mixed Integer Nonlinear Program (MINLP) is a mathematical program with
continuous nonlinear objective and constraints, where some of the variables are
required to take integer values. Without loss of generality, we assume that the
problem is a minimization problem. MINLPs naturally arise in numerous applied
problems, see e.g. [1,2]. In this paper, we address nonconvex MINLPs where
neither the objective function nor the constraints are required to be convex —
a class of problems typically difficult to solve in practice. An exact solution
method for nonconvex MINLPs is Branch-and-Bound [3], where lower bounds
are obtained by convexifying the feasible region using under-estimators, often
linear inequalities [4,5]. The convexification depends on the variable bounds,

� Supported by an IBM grant and by NSF grant OCI-0750826.
�� Supported by U.S. Department of Energy grant DE-FG02-08ER25861 and by NSF

grant CCF-0830153.
� � � Supported by NSF grant OCI-0750826.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 154–169, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Probing Algorithm for MINLP 155

with tighter bounds resulting generally in a tighter convexification. As such,
bound tightening is an important part of any MINLP solver.

Probing is a bound-tightening technique often applied to Mixed Integer Linear
Programs (MILPs) [6]. The idea is to tentatively fix a binary variable to 0 and
then to 1, and use the information obtained to strengthen the linear relaxation
of the problem. Similar techniques have been applied to MINLPs as well [5].
In this paper, we propose a probing technique based on truncated Branch-and-
Bound searches. Let z̄ be the objective value of the best solution of the original
problem found so far. In each Branch-and-Bound search, we choose a variable,
say xi, and impose xi ∈ S, where S is a subinterval of the current domain of xi.
In addition, we add a constraint bounding the objective value of the solution to
at most z̄. If that problem is infeasible, we can discard S from the domain of xi.
On the other hand, if we are able to solve the modified problem to optimality,
with an optimal value z̄∗ < z̄, we update z̄ and can again discard S from the
domain of xi. Details on the choice of xi and S are given in Section 3.

This probing algorithm potentially requires a significant amount of CPU time.
To limit this drawback, we use a Support Vector Machine (SVM) classifier [7]
before performing a Branch-and-Bound search, to predict the success or failure
of the search. If we conclude that the probing algorithm is unlikely to tighten the
bounds on the variable, we skip its application. Machine learning methods have
been used in the OR community for various tasks, such as parameter tuning [8]
and solver selection [9]. In this paper, machine learning is used to predict failures
of an algorithm based on characteristics of its input data. The features on which
the SVM prediction is based are problem and subinterval dependent, and are
related to the outcome of the application of a fast bound-tightening technique
(Feasibility-Based Bound Tightening [5]) using the same subinterval.

We provide preliminary computational results to assess the practical efficiency
of the approach. The experiments show that the proposed probing algorithm
is very effective in tightening the variable bounds, and it is helpful for solv-
ing MINLPs with Branch-and-Bound. By using SVM to predict failures of the
probing algorithm, we save on average 30% of the total bound-tightening time,
without much deterioration of the quality of the bounds.

The rest of this paper is organized as follows. In Section 2, we introduce
the necessary background. In Section 3, we describe the probing algorithm. In
Section 4, we discuss how we can integrate a machine learning method in our
algorithm to save CPU time. In Section 5, we provide computational testing of
the proposed ideas and Section 6 has conclusions.

2 Background

A function is factorable if it can be computed in a finite number of simple steps,
starting with model variables and real constants, using elementary unary and
binary operators. We consider an MINLP of the form:

156 G. Nannicini et al.

min f(x)
s.t. gj(x) ≤ 0 ∀j ∈ M

xL
i ≤ xi ≤ xU

i ∀i ∈ N
f(x) ≤ z̄

xi ∈ Z ∀i ∈ NI ,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

P

where f and gj are factorable functions, N = {1, . . . , n} is the set of variable
indices, M = {1, . . . , m} is the set of constraint indices, x ∈ Rn is the vector
of variables with lower/upper bounds xL ∈ (R ∪ {−∞})n, xU ∈ (R ∪ {+∞})n,
and z̄ is an upper bound on the optimal objective value, which can be infinite.
The variables with indices in NI ⊂ N are constrained to take on integer values
in the solution.

A Linear Programming (LP) based Branch-and-Bound algorithm can be used
to solve P [4]. In such a method, subproblems of P are generated by restricting
the variables to reduced interval domains, [x̄L, x̄U] ⊂ [xL, xU]. A key step is the
creation of an LP relaxation of the feasible region of a subproblem, which we
refer to as convexification. This convexification is used to obtain a lower bound
on the optimal objective value of the subproblem. In general, the tighter the
variable bounds, the tighter the convexification, and the stronger the resulting
lower bound. Therefore, bound-tightening techniques aim to deduce improved
variable bounds implied by the constraint structure of the subproblem, and are
widely used by existing software, such as Baron [10] and Couenne [11], for the
solution of MINLPs.

A commonly used bound-tightening procedure is Feasibility-Based Bound
Tightening (FBBT), which uses a symbolic representation of the problem in
order to propagate bound changes on a variable to other variables. For in-
stance, suppose that P contains the equation x3 = x1 +x2, with variable bounds
x1 ∈ [0, 1], x2 ∈ [0, 3], x3 ∈ [0, 4]; if we tighten the bounds on x2 and restrict
this variable to the interval [1, 2], then we can propagate the change to x3 and
impose x3 ∈ [1, 3]. A full description of FBBT can be found in [12,13].

The other aspects of the Branch-and-Bound algorithm are similar to those of
any Branch-and-Bound for solving MILPs; see [5] for more details.

3 The Probing Algorithm

In this section we describe the probing algorithm to increase the lower bound
on variable xi, where the current bounds on that variable are xi ∈ [xL

i , xU
i]

with xL
i > −∞. The special case xL

i = −∞ is treated below. The probing
algorithm for decreasing the upper bound is similar. For simplicity, we describe
the procedure applied to the root node P.

Let � and u be such that xL
i ≤ � ≤ u ≤ xU

i . We denote by Pi[�, u] the problem
obtained from P by adding the constraint xi ∈ [�, u]. For s > 0, an s-probing
iteration for xi consists of the following: set � = xL

i , u = min{xL
i + s, xU

i }, and
perform a Branch-and-Bound search on Pi[�, u] with a time limit. If we have then

A Probing Algorithm for MINLP 157

proved that Pi[�, u] is infeasible, we update the lower bound xL
i ← u. If we are

able to solve Pi[�, u] to optimality, finding a solution with objective value z∗, we
update the best incumbent value z̄ ← z∗ and the lower bound xL

i ← u. In both
cases, the s-probing iteration is deemed a success. Otherwise, it is a failure.

The Aggressive Probing algorithm for variable xi (see Algorithm 1) has
an initial value for s as input and runs an s-probing iteration. While an exit
condition is not met, if the s-probing iteration is successful, the value of s is
doubled and a new s-probing iteration is executed. If an s-probing iteration
fails, the value of s is halved and a new s-probing iteration is performed.

For integer variables, we round the probing interval endpoints appropriately.
Additionally, if the search on Pi[�, u] is completed and u is integer, we set xL

i ←
u + 1 instead of xL

i ← u.
With sufficiently large time limits, Algorithm 1 will provide an optimality

certificate if z̄ is the optimal objective value. If run to completion, the algorithm
proves that no better solution exists with xi in the interval [xL

i , xU
i].

The special case xL
i = −∞ is handled as follows. Define a positive number

B. We perform a Branch-and-Bound search on Pi[−∞,−B]. If Pi[−∞,−B] is
proved infeasible or solved to optimality within the time limit, we set xL

i ← −B
and execute Algorithm 1. Otherwise, we conclude that xL

i cannot be tightened.
In our experiments, we use B = 1010.

Two details of the algorithm still need to be specified: the exit condition and
the initial choice of s. We use two exit conditions: a maximum CPU time for the
application of Aggressive Probing, and a maximum number of consecutive
failed s-probing iterations. We experimented with several choices for the initial
value of s that took into account the distance between the variable bounds and
the solution of the LP relaxation (or a feasible solution to P , if available). But
the results were not better than a simpler method that seems to work well: the
initial value of s is chosen to be a small, fixed value size, depending on the
variable type. In our experiments, we use size = 0.5 for continuous variables,
size = 1.0 for general integer variables, and size = 0.0 for binary variables.

The good performance of the update strategy and the initial choice for the
value of s lies in the dynamic and geometric adjustment of the interval length
during Aggressive Probing. If the initial interval can easily be proven infea-
sible, the s-probing iteration will terminate very quickly, typically with a single
application of FBBT, or at the root node by solving the LP relaxation. In this
case, because the interval size is increased in a geometric fashion, in a few it-
erations we will reach the scale that is needed for the probing interval to be
“not trivially infeasible”. On the other hand, using a small interval size yields
better chances of completing the s-probing iteration within the time limit, in
case Pi[�, u] is difficult to solve even with u close to �.

In our experiments, we set the time limit for the Branch-and-Bound search
during an s-probing iteration to min{2/3 time limit, time limit−current time}.
This avoids investing all of the CPU time in the first probing iteration in cases
where the initial interval-size guess is too large.

158 G. Nannicini et al.

Algorithm 1. The Aggressive Probing algorithm
Input: variable index i, time limit, size, max failures

Set s ← size, fail ← 0,
while current time < time limit and fail < max failures and xL

i < xU
i do

� ← xL
i

Set u ← min{� + s, xU
i }; if xi is integer constrained, round u ← �u�

Execute limited-time Branch-and-Bound on Pi[�, u]
if solution x̄ found then

Set z̄ ← min{z̄, f(x̄)}
if search complete then

if xi is integer constrained then
Set xL

i ← u + 1
else

Set xL
i ← u

Set s ← 2s, fail ← 0
else

Set s ← s/2, fail ← fail + 1

4 Support Vector Machine for Failure Prediction

Applying Aggressive Probing to tighten all variables of even a moderately-
sized MINLP can take a considerable amount of CPU time. We would like to
avoid wasting time in trying to tighten the bounds of a variable for which there
is little hope of success.

Observe that if a probing subproblem Pi[�, u] is not solved to optimality, we
make no progress towards bound tightening and the CPU time invested in that
probing iteration is wasted (unless a feasible solution better than the incumbent
z̄ is found: in this case, the improved solution is kept). To avoid this situation,
we suggest to use the degree of success in applying the fast FBBT algorithm on
Pi[�, u] as a factor in deciding whether or not to run the expensive Aggressive

Probing algorithm. Note that FBBT is the first step of the Branch-and-Bound
algorithm used in Aggressive Probing, so this does not require additional
work. Our hypothesis is that if the constraint xi ∈ [�, u] used during an s-probing
iteration does not result in tighter bounds on other variables when FBBT is
used, then Pi[�, u] is approximately as difficult as P , so the limited-time Branch-
and-Bound algorithm is likely to fail. This intuition is confirmed by empirical
tests: on 84 nontrivial MINLP instances taken from various sources, we perform
Aggressive Probing with max failures = 10 to tighten lower and upper
bound of all variables, processing them in the order in which they appear in
the problem, with a time limit of 1 minute per variable and a total time limit
of 1 hour per instance. We record, for each s-probing iteration, whether FBBT
is able to use the probing interval xi ∈ [�, u] to tighten the bounds on other
variables. We observe that, in 587 cases out of 11,747, no stronger bounds are
obtained. In 528 of these 587 cases (90%), the subsequent Branch-and-Bound
search on Pi[�, u] could not be completed within the time limit. Therefore, the
success of FBBT in using xi ∈ [�, u] to tighten other variable bounds indeed
gives an indication of the difficulty of solving Pi[�, u].

A Probing Algorithm for MINLP 159

Supported by this observation, we use the following strategy. Before applying
Branch-and-Bound to Pi[�, u], we execute FBBT and compute a measure of the
bound reduction obtained on the variables xj , j ∈ N\{i}. Based on this measure,
we use an algorithm to decide whether to perform Branch-and-Bound on Pi[�, u].
In the remainder of this section we discuss our choice of the bound reduction
measure and the decision method.

4.1 Measuring the Effect of FBBT

Several bound-reduction measures are possible. Because our aim is to save CPU
time, the bound-reduction measure computation should be fast. A simple way
of measuring the bound reduction obtained for the variables xj , j ∈ N \ {i}, is
to count the number of tightened variables, and for each of these, to compute
the interval reduction: γ(xj) = 1 − (x̃U

j − x̃L
j)/(xU

j − xL
j), where x̃L (resp. x̃U)

are the vectors of variable lower (resp. upper) bounds after applying FBBT, and
xL, xU are those of the original problem P . (Infinity is treated like a number
in the following way: 1/∞ = 0,∞/2∞ = 0.5.) Hence, to quantify the bound
reduction associated with the application of FBBT on the problem Pi[�, u], we
use a vector (η, ρ) ∈ [0, 1]2, where η is the fraction of tightened variables, and ρ
is the average value of γ(xj) over all xj that were successfully tightened.

4.2 Support Vector Machines

Once a vector (η, ρ) is computed for variable xi, the decision of whether to
perform Branch-and-Bound is taken by a predictor trained by a Support Vector
Machine (SVM). While it could be argued that SVM is not really required for
classifying our 2-dimensional data, we use SVM for three reasons. First, in our
experiments SVM performs better than a predictor based on a simple Gaussian
model for the data, see Section 5.2. Second, our future research efforts will utilize
additional input features besides (η, ρ) (see Section 6 for details); therefore, the
flexibility and extensibility of SVM is desirable. Finally, SVM is a parameterized
method allowing better control of the trade-off between Precision and Recall
of the classifier (see below for details) than simpler methods. Because we are
interested in a classifier with high Precision and good Recall, the ability to tune
the classifier is an advantage.

Next, we provide a brief description of the basic concepts behind SVM; see
[14,15] for a comprehensive introduction to the topic. Given training data D =
{(zi, yi) : zi ∈ Rp, yi ∈ {−1, 1}, i ∈ 1, . . . , q}, SVM seeks an affine hyperplane
that separates the points with label −1 from those with label 1 by the largest
amount, i.e., the width of the strip containing the hyperplane and no data point
in its interior is as large as possible.

In its simplest form, the associated optimization problem can be written as:

min ‖h‖2

s.t. yi(h	zi − b) ≥ 1 ∀(zi, yi) ∈ D
h ∈ Rp, b ∈ R,

⎫⎬
⎭ (SVM)

160 G. Nannicini et al.

where the hyperplane is defined by h	z = b. Instead of seeking a separating
hyperplane in Rp, which may not exist, SVM implicitly maps each data point
into a higher dimensional feature space where linear separation may be possi-
ble. The mapping is implicit because we do not need explicit knowledge of the
feature space. In the optimization problem (SVM), we express the separating
hyperplane in terms of the training points zi (see e.g., [15]), and substitute the
dot-products between vectors in Rp with a possibly nonlinear kernel function
K : Rp × Rp �→ R. The kernel function can be interpreted as the dot-product
in the higher-dimensional space. The separation hyperplane in the feature space
translates into a nonlinear separation surface in the original space Rp. Further-
more, SVM handles data that is not separable in the feature space by using a
soft margin, i.e., allowing the optimal separation hyperplane to misclassify some
points, imposing a penalty for each misclassification. The outcome of the SVM
training algorithm is a subset V of {zi : ∃y ∈ {−1, 1} with (zi, y) ∈ D} with
corresponding scalar multipliers αv : v ∈ V , and a scalar b. The elements of V
are called support vectors. To classify a new data point w ∈ Rp, we compute the
value of

∑
v∈V αvK(v, w)−b and use its sign to classify w. Hence, the complexity

of storing an SVM model depends on the number of support vectors |V |, and
the time required to classify a new data point depends on |V | and K.

Commonly used kernel functions are:

– linear: K(u, v) = u	v,
– polynomial: K(u, v) = (λu	v + β)d,
– radial basis: K(u, v) = e−λ‖u−v‖2

,

where λ, β and d are input parameters. Problem-specific kernel functions can
be devised as well. Another commonly adjusted tuning parameter is the mis-
classification cost ω, which determines the ratio between the penalty paid for
misclassifying an example of label 1 and the penalty paid for misclassifying an
example of label −1. The ratio ω can be adjusted to handle unbalanced data
sets where one class is much more frequent than the other.

4.3 Aggressive Probing Failure Prediction with SVM

In this section we assume that we have an SVM model trained on a data set
of the form D = {(ηi, ρi, yi) : (ηi, ρi) ∈ [0, 1]2, yi ∈ {−1, 1}, i = 1, . . . , q}, where
each point corresponds to an s-probing iteration, ηi, ρi are as defined in Sec-
tion 4.1, and yi = 1 if the limited-time Branch-and-Bound search applied to the
corresponding probing subproblem did not complete, yi = −1 otherwise. Gen-
erating the set D and computational experiments with model training will be
discussed in Section 5.

Given such an SVM model, we proceed as follows. At an s-probing iteration
corresponding to problem Pi[�, u], we apply FBBT and compute the resulting
wj = (ηj , ρj) as described in Section 4.1. If wj = (0, 0), FBBT could not tighten
the bounds on any variable; in this case, as discussed at the beginning of Sec-
tion 4, we do not execute Branch-and-Bound and continue to the subsequent
probing iteration as if the s-probing iteration failed. If wj �= (0, 0), we predict

A Probing Algorithm for MINLP 161

the label yj of wj using our SVM classifier. The Branch-and-Bound search on
Pi[�, u] is thus executed only if the predicted label is yj = −1; otherwise, we
continue with the algorithm as if the s-probing iteration failed.

Note that we could apply the SVM classifier even on points of the form (0, 0).
However, in our experiments this point was always labeled as 1 by the tested
SVM models, therefore we save CPU time by not running the SVM predictor.
Additionally, we exclude points (0, 0, yi) from the data set D on which the model
is trained; this yields an additional advantage that will be discussed in Section 5.

5 Computational Experiments

We implemented Aggressive Probing within Couenne, an open-source
Branch-and-Bound solver for nonconvex MINLPs [11]. We are mainly interested
in applying our probing technique to difficult instances P to improve a Branch-
and-Bound search; thus, in our implementation Aggressive Probing reuses as
much previously computed information as possible. The root node of each prob-
ing subproblem Pi[�, u] is generated by modifying the root node of P , changing
variable bounds and possibly generating new linear inequalities to improve the
convexification, so that the problem instance is read and processed only once.
The branching strategy of Couenne was set to Strong Branching [5,16] in all
experiments.

We utilized LIBSVM [17], a library for Support Vector Machines written in C.
Given the availability of LIBSVM’s source code, it could be efficiently integrated
within Couenne for our tests. The experiments were conducted on a 2.6 GHz
AMD Opteron 852 machine with 64GB of RAM, running Linux.

5.1 Test Instances

The test instances are a subset of MINLPLib [18], a freely available collection
of convex and nonconvex MINLPs. We excluded instances with more than 1,000
variables and instances for which the default version of Couenne took more than
2 minutes to process the root node, or ran into numerical problems. Additionally,
we excluded the instances for which Aggressive Probing was able to find the
optimal solution and provide an optimality certificate in less than 2 hours. These
are easy instances that can be quickly solved by default Couenne, therefore there
is no need for expensive bound-tightening methods. We are left with 32 instances,
which are listed in Table 1.

5.2 Training the SVM Classifier

As a first step in training an SVM to classify failures of the probing algorithm,
we obtained a large-enough set of training examples. We used a superset of
the test problems described in Section 5.1, including some additional problems
from MINLPLib as well as problems from [19] with less than 1,000 variables,
giving a total of 84 instances. We applied Aggressive Probing on all variables,
with a time limit of 30 seconds for each s-probing iteration, 1 minute for each

162 G. Nannicini et al.

variable bound, and 2 hours per problem instance. We did not include data for
s-probing iterations started with less than 20 seconds of CPU time left within
the time limit, or iterations in which a feasible MINLP solution was discovered
during the Branch-and-Bound search. For the remaining s-probing iterations,
we recorded the values of (ηi, ρi) (see Section 4.1) and a label yi = 1 if the
probing iteration fails, yi = −1 if it succeeds. The reason for excluding s-probing
iterations performed with less than 20 seconds of CPU time left is that they
are likely to fail simply because they are not given enough time to complete,
regardless of the difficulty of the s-probing subproblem. Similarly, we excluded
s-probing iterations in which an improved solution was found, because such a
discovery cannot be predicted by only considering the s-probing subproblem, yet
it can be used to infer tighter variable bounds through FBBT, therefore making
Pi[�, u] easier than initially estimated. This yields a data set D with q = 11, 747
data points that can be used for training, as explained in Section 4.3. Eliminating
all points with (ηi, ρi) = (0, 0) (see end of Section 4.3) leaves 11, 160 points, of
which 4, 186 have the label yi = 1. By removing the points (0, 0) from the training
set, the number of support vectors in the final model is likely to be smaller.

It is known that SVM is very sensitive to its algorithm settings, hence a grid
search on a set of input parameters is typically applied in order to find the values
that yield the best performance on the input data. We tested three types of kernel
functions: linear, polynomial, and radial. For each of these kernel functions, we
performed grid search on the input parameters (see end of Section 4.2), using
the following values: λ = 2k with k = −3, . . . , 2, β = 2k with k = −3, . . . , 2,
d = 1, . . . , 5, and ω = 2k with k = −3, . . . , 4. Each parameter was considered
only when appropriate; e.g., d was used for the polynomial kernel only. Overall,
we tested 1,057 combinations of input parameters.

In our first set of experiments pertaining to the training of an SVM on D,
we performed 3-fold cross validation. We trained the model on 2/3 of D, and
used the remaining 1/3 to estimate the performance of the model. The result-
ing model consisted of 4,500 to 5,000 support vectors. Such a large number of
support vectors would yield a slow classifier and may indicate overfitting. To
obtain a model with fewer support vectors, we first attempted ν-classification
[14], without success. In the end, training the model on a small subset of the
full data set D was found to be very effective in reducing the number of support
vectors, without deterioration in the accuracy of the model; this approach has
been used before in the machine learning community [20].

With this setup, experiments for testing parameter values of the model were
performed as follows. We randomly selected 10 different training sets, each one
containing 1/10 of the full data set D. Each training experiment, corresponding
to a set of input parameter values, was performed on each of the 10 training
sets, and the performance of the resulting models was evaluated on the 9/10 of
D that was not used for training. To measure performance, we use Precision and
Recall, commonly defined as follows:

Precision: TP/(TP + FP), Recall: TP/(TP + FN),

A Probing Algorithm for MINLP 163

T
a
b
le

1
.

P
er

fo
rm

a
n
ce

o
f

A
g
g
r
e
s
s
i
v
e

P
r
o
b
i
n
g
,

w
it
h

a
n
d

w
it
h
o
u
t

fa
il
u
re

p
re

d
ic

ti
o
n

b
y

S
V

M
.

W
e

re
p
o
rt

,
a
ft

er
p
ro

b
in

g
(c

o
lu

m
n
s

“
P

ro
b
in

g
”
)

a
n
d

a
ft

er
a
p
p
ly

in
g

F
B

B
T

a
n
d

re
co

m
p
u
ti
n
g

th
e

co
n
v
ex

ifi
ca

ti
o
n

(c
o
lu

m
n
s

“
P

ro
b
in

g
+

F
B

B
T

+
C

o
n
v
.”

):
th

e
fr

a
ct

io
n

o
f

ti
g
h
te

n
ed

va
ri
a
b
le

s
w

it
h

fi
n
it
e

b
o
u
n
d
s,

a
n
d

th
e

av
er

a
g
e

b
o
u
n
d

re
d
u
ct

io
n
.
W

e
a
ls
o

re
p
o
rt

th
e

a
m

o
u
n
t

o
f
o
p
ti
m

a
li
ty

g
a
p

cl
o
se

d
b
y

th
e

n
ew

co
n
v
ex

ifi
ca

ti
o
n
,
a
n
d

th
e

to
ta

l
p
ro

b
in

g
ti
m

e.

W
it

h
o
u
t

S
V

M
W

it
h

S
V

M
#

v
a
rs

P
ro

b
in

g
P

ro
b
in

g
+

F
B

B
T

+
C

o
n
v
.

P
ro

b
in

g
P

ro
b
in

g
+

F
B

B
T

+
C

o
n
v
.

In
st

a
n
c
e

o
ri

g
to

ta
l

T
g
h
t.

%
R

e
d
.
%

T
g
h
t.

%
R

e
d
.
%

G
a
p

%
T

im
e

T
g
h
t.

%
R

e
d
.
%

T
g
h
t.

%
R

e
d
.
%

G
a
p

%
T

im
e

c
s
c
h
e
d
2

4
0
1

5
8
2

2
.0

0
5
.0

5
3
.4

4
7
.1

2
9
7
.7

6
3
6
4
7
4
.7

1
.2

5
4
.7

4
1
.2

0
1
7
.5

0
9
7
.7

6
2
8
8
.2

f
o
7
2

1
1
5

2
5
3

1
2
.1

7
2
5
.0

0
1
3
.0

4
4
3
.6

2
0
.0

0
1
1
1
3
3
.1

1
2
.1

7
7
.8

7
1
3
.0

4
3
5
.3

7
0
.0

0
6
7
3
1
.2

f
o
7

1
1
5

2
5
3

1
0
.4

3
3
1
.8

4
9
.8

8
5
7
.8

2
0
.0

0
1
1
1
2
9
.9

1
0
.4

3
5
.8

7
9
.8

8
4
3
.2

8
0
.0

0
5
4
8
7
.6

f
o
8
a
r
2
1

1
4
5

3
7
1

4
6
.9

0
5
0
.1

2
3
8
.8

1
4
7
.2

3
0
.0

0
1
6
3
7
2
.5

4
6
.9

0
4
9
.9

9
3
8
.8

1
4
7
.1

5
0
.0

0
1
3
4
9
4
.5

f
o
8
a
r
2
5
1

1
4
5

3
7
1

4
6
.9

0
5
0
.9

7
3
8
.8

1
4
7
.7

0
0
.0

0
1
6
3
7
3
.4

4
6
.9

0
5
0
.2

2
3
8
.8

1
4
7
.2

4
0
.0

0
1
3
5
2
3
.9

f
o
8
a
r
3
1

1
4
5

3
7
1

5
1
.7

2
4
8
.5

3
4
6
.6

3
4
1
.4

2
0
.0

0
1
6
4
4
8
.0

5
2
.4

1
4
6
.3

1
4
8
.2

5
3
9
.4

1
0
.0

0
1
4
4
7
4
.2

f
o
8
a
r
5
1

1
4
5

3
7
1

4
9
.6

6
4
7
.9

1
4
2
.5

9
4
3
.5

0
0
.0

0
1
6
3
8
5
.6

4
9
.6

6
4
8
.0

6
4
2
.5

9
4
3
.6

0
0
.0

0
1
4
7
1
5
.3

f
o
8

1
4
7

3
2
5

9
.5

2
2
4
.8

0
8
.9

2
5
5
.2

1
0
.0

0
1
4
1
8
6
.1

8
.1

6
3
.2

3
8
.3

1
4
6
.2

9
0
.0

0
6
1
0
7
.0

f
o
9
a
r
2
1

1
8
1

4
6
2

4
7
.5

1
4
9
.4

5
3
9
.1

8
4
6
.1

9
0
.0

0
2
0
4
3
5
.2

4
7
.5

1
4
6
.5

0
3
9
.1

8
4
4
.3

0
0
.0

0
1
3
7
6
8
.2

f
o
9
a
r
2
5
1

1
8
1

4
6
2

4
7
.5

1
4
9
.5

7
3
9
.1

8
4
6
.1

6
0
.0

0
2
0
4
3
9
.2

4
7
.5

1
4
6
.4

5
3
9
.1

8
4
4
.1

8
0
.0

0
1
3
8
2
1
.3

f
o
9
a
r
3
1

1
8
1

4
6
2

4
9
.7

2
5
0
.2

0
4
2
.4

2
4
4
.6

6
0
.0

0
2
0
4
3
3
.2

4
9
.7

2
4
5
.4

1
4
2
.4

2
4
1
.8

0
0
.0

0
1
7
8
3
8
.2

f
o
9
a
r
4
1

1
8
1

4
6
2

4
9
.7

2
4
8
.8

5
4
2
.4

2
4
3
.7

0
0
.0

0
2
0
4
4
3
.4

4
9
.7

2
4
4
.9

0
4
2
.4

2
4
1
.4

8
0
.0

0
1
7
9
7
7
.8

f
o
9
a
r
5
1

1
8
1

4
6
2

4
9
.7

2
4
8
.2

6
4
2
.4

2
4
3
.2

9
0
.0

0
2
0
4
3
7
.1

4
9
.7

2
4
4
.9

5
4
2
.4

2
4
1
.4

4
0
.0

0
1
8
0
3
7
.8

f
o
9

1
8
3

4
0
6

8
.2

0
1
6
.8

1
7
.8

8
5
2
.6

6
0
.0

0
1
7
5
4
6
.6

8
.2

0
2
.5

0
7
.8

8
4
5
.1

2
0
.0

0
7
0
2
1
.7

l
o
p
9
7
i
c
x

9
8
7

1
3
9
3

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
2
0
6
0
2
.0

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
2
1
.1

n
v
s
2
3

1
0

6
4

9
0
.0

0
9
2
.0

7
1
0
0
.0

0
9
8
.4

1
9
7
.0

2
1
0
8
0
.8

9
0
.0

0
9
1
.8

0
1
0
0
.0

0
9
8
.3

8
9
7
.1

0
1
0
8
0
.7

n
v
s
2
4

1
1

7
6

9
0
.9

1
8
8
.2

5
1
0
0
.0

0
9
7
.4

7
9
4
.9

6
1
2
0
1
.0

9
0
.9

1
8
8
.2

5
1
0
0
.0

0
9
7
.4

7
9
4
.9

6
1
2
0
1
.2

o
7
2

1
1
5

2
5
3

1
9
.1

3
2
6
.5

0
1
9
.3

7
4
6
.3

8
0
.0

0
1
1
2
9
2
.3

1
9
.1

3
2
6
.5

0
1
9
.3

7
4
6
.3

8
0
.0

0
1
0
1
9
1
.1

o
7
a
r
4
1

1
1
3

2
9
0

5
4
.8

7
4
7
.1

5
4
8
.2

8
4
7
.1

6
0
.0

0
1
2
9
1
8
.8

5
4
.8

7
4
7
.2

5
4
8
.2

8
4
7
.2

2
0
.0

0
1
2
9
1
8
.4

o
7

1
1
5

2
5
3

1
7
.3

9
2
8
.1

2
1
6
.2

1
5
3
.7

6
0
.0

0
1
1
2
9
4
.3

1
7
.3

9
2
7
.9

7
1
6
.2

1
5
3
.6

7
0
.0

0
6
8
7
2
.0

o
8
a
r
4
1

1
4
5

3
7
1

5
9
.3

1
4
5
.3

5
5
2
.2

9
4
7
.5

2
0
.0

0
1
6
6
9
6
.9

5
9
.3

1
4
5
.8

0
5
2
.2

9
4
7
.8

1
0
.0

0
1
6
6
9
7
.2

o
9
a
r
4
1

1
8
1

4
6
2

5
6
.3

5
4
5
.7

6
4
9
.1

3
4
5
.9

6
0
.0

0
2
0
7
1
7
.9

5
6
.3

5
4
5
.7

6
4
9
.1

3
4
5
.9

6
0
.0

0
2
0
4
7
4
.3

s
p
a
c
e
2
5
a

3
8
4

5
0
2

1
7
.1

9
3
8
.1

6
3
2
.6

7
3
0
.6

1
0
.0

0
3
6
7
4
6
.0

1
6
.9

3
3
6
.6

4
2
9
.2

8
3
2
.2

2
0
.0

0
3
6
7
0
4
.2

t
l
n
1
2

1
6
9

3
6
1

3
5
.5

0
3
5
.6

7
3
7
.9

5
3
4
.1

0
0
.0

0
1
9
2
4
3
.3

3
5
.5

0
3
5
.6

7
3
7
.9

5
3
4
.1

0
0
.0

0
1
7
9
7
3
.4

t
l
n
5

3
6

8
1

4
1
.6

7
3
3
.3

3
6
2
.9

6
4
4
.8

6
0
.0

0
3
9
9
7
.8

4
1
.6

7
3
3
.3

3
6
2
.9

6
4
4
.8

6
0
.0

0
3
9
9
7
.8

t
l
n
6

4
9

1
0
9

6
1
.2

2
2
8
.3

3
7
1
.5

6
4
1
.2

4
0
.0

0
5
5
3
2
.1

6
1
.2

2
2
8
.3

3
7
1
.5

6
4
1
.2

4
0
.0

0
5
6
1
9
.6

t
l
n
7

6
4

1
4
1

4
3
.7

5
2
5
.6

0
6
4
.5

4
3
2
.9

0
0
.0

0
7
2
8
5
.5

4
3
.7

5
2
5
.6

0
6
4
.5

4
3
2
.9

0
0
.0

0
7
2
8
1
.3

t
l
s
1
2

8
1
3

1
2
8
5

1
4
.3

9
6
7
.4

2
3
2
.1

4
4
8
.1

1
0
.0

0
1
2
9
6
6
0
.0

1
4
.3

9
6
7
.4

2
3
2
.1

4
4
8
.1

1
0
.0

0
1
2
8
5
9
2
.0

t
l
s
6

2
1
6

3
5
9

2
.7

8
1
0
0
.0

0
2
5
.0

7
4
5
.6

0
0
.0

0
1
8
5
1
4
.3

2
.7

8
1
0
0
.0

0
2
5
.0

7
4
5
.6

0
0
.0

0
1
8
4
0
1
.0

w
a
t
e
r
4

1
9
6

3
1
9

2
5
.5

1
5
6
.5

4
4
0
.1

3
5
0
.4

9
4
1
.5

4
1
8
3
0
5
.9

2
7
.5

5
6
0
.8

0
4
1
.6

9
5
3
.4

7
5
0
.4

7
1
8
0
1
3
.8

w
a
t
e
r
x

7
1

1
7
4

1
4
.0

8
2
5
.3

8
3
2
.1

8
2
0
.7

7
3
4
.8

3
7
9
2
6
.7

1
5
.4

9
2
3
.0

8
3
4
.4

8
1
9
.3

6
3
4
.8

3
7
8
7
4
.8

w
a
t
e
r
z

1
9
6

3
1
9

1
5
.3

1
6
2
.0

2
2
5
.7

1
5
5
.1

0
2
1
.4

7
1
8
6
3
7
.7

1
4
.8

0
6
7
.2

8
2
4
.1

4
6
0
.0

7
2
9
.3

5
1
8
6
1
7
.8

A
v
g
.

1
9
7
.4

1
3
8
8
.2

8
2
3
.9

2
4
3
.5

3
3
0
.5

0
4
5
.6

5
1
2
.1

1
2
2
4
9
6
.6

2
3
.9

0
4
0
.5

8
3
0
.3

2
4
4
.5

9
1
2
.6

4
1
5
4
9
4
.3

164 G. Nannicini et al.

where TP is the number of True Positives, i.e., the examples with label 1 that
are classified with label 1 by the model. FP is the number of False Positives,
i.e., the examples with label −1 that are classified with label 1. Finally, FN is
the number of False Negatives, i.e., the examples with label 1 that are classified
with label −1. Intuitively, Precision is the fraction of data points labeled 1 by
the classifier that are indeed of class 1, whereas Recall is the fraction of class 1
data points processed by the classifier that are correctly labeled as 1. Overall,
for each set of training parameters, we have 10 values for Precision and 10 values
for Recall. We compute the average and the standard deviation of these values,
and use them to choose the best set of parameters.

Results of this experiment are summarized in Figure 1. Each point represents
the average values of Precision and Recall corresponding to a set of parameter
values. When producing the figure, we eliminated points for which the standard
deviation of either Precision or Recall was more than 1/4 of its mean, because
these points correspond to experiments with unreliable results.

Figure 1 shows the trade-off between Precision and Recall that can be achieved
by varying the learning parameters. We are interested in the set of Pareto optima
with respect to these two criteria. Most Pareto optima are obtained with a polyno-
mial kernel, and the remaining with a radial-basis kernel. The linear kernel yields
inferior results, implying that the data set is difficult to separate in the original
space. There are points with very high Precision (> 85%) but low Recall that
represent “conservative” classifiers: very few probing iterations are labeled as 1
(failure), but in that case the classifier is almost always correct. Such a classifier is
of limited value for our purpose. We are more interested in the region with roughly
80% Precision and 60% Recall: approximately 60% of the unsuccessful probing it-
erations in the test set are predicted correctly, while keeping good Precision. These
models use a polynomial kernel with degree d ≥ 3 and ω = 1; additionally, we
found that using β = 1, 2, or 4 seems effective. These models have between 500
and 800 support vectors. The standard deviation of Precision and Recall for all
models achieving a Pareto optimum is fairly small, typically less than 2. There-
fore, we can assume that the performance of the SVM model does not depend
heavily on the particular subset of D that is used for training.

For comparison, we also fit a simple 2-dimensional Gaussian model. In this
model, each class is assumed to be normally distributed, and a 2-dimensional
Gaussian model is fit to each class using maximum-likelihood estimation. Then,
we classify points in the corresponding test set by computing the probability that
they are generated by the two normal distributions and by picking the class that
maximizes this probability. Over the 10 training/test sets, the Gaussian model
gives a classifier with mean Precision 47.90%, standard deviation 0.91, mean
Recall 87.47%, standard deviation 1.31. This performance is comparable to a
particular choice of parameters of SVM to obtain high Recall and low Precision.
Computational experiments (not reported in detail) demonstrate that using the
Gaussian model leads to weaker bound tightening compared to SVM, with no
saving of CPU time on average.

A Probing Algorithm for MINLP 165

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

R
ec

al
l %

Precision %

polynomial
linear

radial basis
chosen model

Fig. 1. Average values of Precision and Recall for all tested combinations of training
input parameters

Based on these results, we use an SVM model trained with a polynomial ker-
nel of degree 4, λ = 4, β = 4, ω = 1 for the experiments in the remainder of
this section; this model has 580 support vectors yielding fast classification. Note
that 580 is almost half the size of the training set, suggesting that some overfit-
ting might occur. However, the model shows good performance on examples not
included in the training set.

5.3 Testing the Probing Algorithm

In this section, we discuss the effect of applying Aggressive Probing on a
set of difficult MINLPs. In addition to FBBT, we also use Optimality-Based
Bound Tightening (OBBT) [12]. This bound-tightening technique maximizes
and minimizes the value of each variable over the convexification computed by
Couenne at the root node, and uses the optimal values as variable bounds. For
each test instance, we first apply FBBT and OBBT. Then, for each variable, we
apply Aggressive Probing to tighten both the lower and upper bounds, with
a time limit of 60 seconds per variable, and 36 hours per instance. The parameter
max failures is set to 10. Variables are processed in the order in which they
are stored in Couenne. Note that Couenne uses a standardized representation
of the problem where extra variables, called auxiliary variables, are typically
added to represent expressions in the original problem formulation [5]. In our
experiments, to limit CPU time, OBBT and Aggressive Probing are applied
only to original variables; in principle, both can be applied to auxiliary variables
without modification.

166 G. Nannicini et al.

After Aggressive Probing has been applied to all of the original variables
or the global time limit is reached, we record the fraction of tightened variables η,
and the average bound reduction ρ, as described in Section 4.1. Then, we apply
an additional iteration of FBBT to propagate the new bounds and generate
convexification inequalities. This gives a strengthened convexification C′ of P
that is compared to the initial one, C. We record the fraction of variables for
which at least one bound could be tightened in C′, as well as the average bound
reduction ρ of the tightened variables. Additionally, we compute the percentage
of the optimality gap of C that is closed by C′, i.e., (z(C′)− z(C))/(z(P)− z(C)),
where z(C) is the optimal objective value of C, and z(P) is the value of the best
known solution for the particular instance. The value of z(P) for each instance
was obtained from the MINLPLib website.

Results are reported in Table 1. The fraction of tightened variables is relative
to the number of original variables for “Probing”. For “Probing + FBBT +
Conv.”, it is relative to the total number of variables, because auxiliary variables
can also be tightened after bound propagation through FBBT. The fraction of
tightened variables takes into account variables with finite bounds only. Infinite
variable bounds are tightened to a finite value only for the three water instances,
independent of whether SVM is used.

First, we discuss the effect of Aggressive Probing alone. Table 1 shows that
the effect of probing is problem-dependent; for example, for lop97icx, no vari-
able is tightened by our algorithm, and for nvs23 and nvs24, more than 90% of
the variables are tightened. On average, approximately 25% of the original vari-
ables are tightened by Aggressive Probing, and after applying FBBT, approxi-
mately 30% of the total number of variables (original plus auxiliary) gained tighter
bounds. The average bound reduction is close to 50%. The amount of optimal-
ity gap closed by adding convexification inequalities after tightening the bound
is largely problem dependent as well. The new convexification is much stronger
for the water, nvs and csched2 instances, but for the remaining instances, the
optimality gap is unchanged. This is probably due to the geometry of the initial
convexification, for which the LP solution is extremely difficult to cut off without
branching, so that no optimality gap is closed by Aggressive Probing. In sum-
mary, on all but one test instance, Aggressive Probing is able to provide better
variable bounds compared to traditional bound-tightening techniques (FBBT fol-
lowed by OBBT). This comes at a large computational cost, but may be worth
the effort for some difficult instances that cannot be solved otherwise, or when
parallel computing resources provide a large amount of CPU power.

Comparing the Aggressive Probing algorithm with and without SVM for
failure prediction, we observe on average 30% of computing time saving when
using SVM, while the number of tightened variables and average bound tight-
ening is only slightly weaker. CPU time savings are problem dependent: the
difference can be huge (csched2a, lop97icx), or negligible. In only two cases
(nsv24 and tln6), using SVM for failure prediction results in an overall longer
probing time, but the increase is negligible. Summarizing, using an SVM model
to predict likely failures of the Aggressive Probing algorithm leads to CPU

A Probing Algorithm for MINLP 167

Table 2. Number of successful and failed s-probing iterations recorded by applying
Aggressive Probing on the full test set of Table 1

s-prob. iter.
Success Failure

Without SVM 1600 18131
With SVM 1634 8998

Table 3. Results on water instances with Branch-and-Bound, with and without Ag-

gressive Probing. We report the percentage of optimality gap closed at the end of
the optimization process, the number of nodes, and the total CPU time. When Ag-

gressive Probing is used, we additionally report the optimality gap closed by probing
at the root (after recomputing the convexification) and the corresponding CPU time.

Without Aggr. Probing With Aggr. Probing + SVM
Final Probing Root Final

Instance Gap % Nodes Time Gap % Time Gap % Nodes Time

water4 100.00 1751046 20252.1 50.47 18013.8 100.00 88902 28977.1
waterx 30.31 589477 86415.6 34.83 7874.8 67.11 582046 86393.3
waterz 77.78 11088079 86399.6 29.35 18617.8 100.00 1033027 45082.8

time savings that depend on the problem instance at hand and are sometimes
very large, sometimes moderate, while variable bounds are tightened by almost
the same amount.

Table 2 reports the total number of successful and failed s-probing iterations
performed over all test instances. The use of an SVM classifier decreases the
number of failed s-probing iterations by a factor two, and increases the percent-
age of successful s-probing iterations from 8% to 15%. These improvements come
at essentially no cost.

5.4 Branch-and-Bound After Probing

The main purpose of a bound-tightening technique is to improve the performance
of a Branch-and-Bound search. In this section, we report Branch-and-Bound ex-
periments with and without Aggressive Probing on a few selected instances.
Table 1 indicates that the probing algorithm proposed in this paper may be
effective on the three water instances. Therefore, we execute the Branch-and-
Bound algorithm of Couenne on these instances with a time limit of 24 hours,
using the variable bounds obtained after applying FBBT and OBBT at the root
node. Then we perform the same experiment using the variable bounds provided
by Aggressive Probing with SVM for failure prediction. Results are reported
in Table 3, where we include the time spent by probing in the total CPU time.

The water4 instance is solved with and without Aggressive Probing;
Branch-and-Bound without probing is 30% faster, but it explores 20 times as
many nodes. Thus, probing is very effective in reducing the size of the enumer-
ation tree. The waterx instance remains unsolved after 24 hours. However, em-
ploying Aggressive Probing yields a much better lower bound when the time

168 G. Nannicini et al.

limit is reached (we close an additional 37% of optimality gap). Finally, waterz
is not solved by Branch-and-Bound unless Aggressive Probing is used. Due
to tighter variable bounds, we can solve the instance to optimality in approx-
imately 12 hours, whereas it is unsolved in 24 hours (with 1.2 million active
nodes and 23% optimality gap left) if Aggressive Probing is not employed.
To the best of our knowledge, an optimality certificate for the solutions to the
water4 and waterz has not been provided previously; the optimal solutions of
these instances have objective values 910.8821 and 907.0169, respectively.

6 Conclusions

In this paper, we presented a bound-tightening technique for MINLP that uses
truncated Branch-and-Bound searches. Computational tests demonstrate that
our Aggressive Probing algorithm is able to tighten the variable bounds on
many instances, even after other bound-tightening techniques have been applied.
Because Aggressive Probing can easily be carried out in parallel, it is well-
suited for leveraging parallel environments to solve difficult MINLPs .

The main drawback of the method is its large computational cost. By using
an SVM classifier, we predict success or failure of each iteration of Aggressive

Probing, where the prediction is based on features of the algorithm’s input.
Skipping the probing iterations likely to fail saves on average 30% of the com-
puting time. Currently, the prediction is based on only two easy-to-compute
features of the input problem, but we plan to extend the model by taking into
account more features, such as the maximum allowed time for the probing iter-
ation, and a measure of its effectiveness from previous iterations.

Computational experiments demonstrate that, on some instances, the overall
Branch-and-Bound search is improved using our bound-tightening algorithm. In
particular, we are able to solve a difficult MINLPLib instance, waterz, for the
first time, and we obtain better lower bounds (or a smaller enumeration tree)
for other instances.

References

1. Biegler, L., Grossmann, I., Westerberg, A.: Systematic Methods of Chemical Pro-
cess Design. Prentice-Hall, Upper Saddle River (NJ) (1997)

2. Floudas, C.: Global optimization in design and control of chemical process systems.
Journal of Process Control 10, 125–134 (2001)

3. Tawarmalani, M., Sahinidis, N.: Exact algorithms for global optimization of mixed-
integer nonlinear programs. In: Pardalos, P., Romeijn, H. (eds.) Handbook of
Global Optimization, vol. 2, pp. 65–86. Kluwer Academic Publishers, Dordrecht
(2002)

4. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear
programs: A theoretical and computational study. Mathematical Programming 99,
563–591 (2004)

5. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods and Soft-
ware 24(4-5), 597–634 (2008)

A Probing Algorithm for MINLP 169

6. Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer pro-
gramming problems. ORSA Journal on Computing 6(4), 445–455 (1994)

7. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297
(1995)

8. Hutter, F., Hoos, H., Leyton-Brown, K.: Automated configuration of mixed integer
programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

9. Markót, M.C., Schichl, H.: Comparison and automated selection of local optimiza-
tion solvers for interval global optimization methods. Technical report, Faculty of
Mathematics, University of Vienna

10. Sahinidis, N.: Baron: Branch and reduce optimization navigator, user’s manual,
version 4.0 (1999), http://archimedes.scs.uiuc.edu/baron/manuse.pdf

11. Belotti, P.: Couenne: a user’s manual. Technical report, Lehigh University (2009)
12. Shectman, J., Sahinidis, N.: A finite algorithm for global minimization of separable

concave programs. Journal of Global Optimization 12, 1–36 (1998)
13. Smith, E.: On the Optimal Design of Continuous Processes. PhD thesis, Imperial

College of Science, Technology and Medicine, University of London (October 1996)
14. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods. Cambridge University Press, Cambridge
(2000)

15. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Reg-
ularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

16. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Re-
search Letters 33(1), 42–54 (2005)

17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

18. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib — a collection of test mod-
els for Mixed-Integer Nonlinear Programming. INFORMS Journal on Computing
15(1) (2003)

19. CMU-IBM: Cyber-Infrastructure for MINLP, http://www.minlp.org
20. Koggalage, R., Halgamuge, S.: Reducing the number of training samples for fast

support vector machine classification. Neural Information Processing - Letters 2(3),
57–65 (2004)

Recovering Indirect Solution Densities for

Counting-Based Branching Heuristics

Gilles Pesant1 and Alessandro Zanarini2

1 École Polytechnique de Montréal, Canada
gilles.pesant@polymtl.ca
2 Dynadec Europe, Belgium

alessandro.zanarini@dynadec.com

Abstract. Counting-based branching heuristics in CP have been very
successful on a number of problems. Among the few remaining hurdles
limiting their general applicability are the integration of counting infor-
mation from auxiliary variables and the ability to handle combinatorial
optimization problems. This paper proposes to answer these challenges
by generalizing existing solution counting algorithms for constraints and
by relaying counting information to the main branching variables through
augmented element constraints. It offers more easily comparable solution
counting information on variables and stronger back-propagation from
the objective function in optimization problems. We provide supporting
experimental results for the Capacitated Facility Location Problem.

1 Introduction

The recent development of generic branching heuristics based on counting the
number of solutions of individual constraints has led to state-of-the-art results
on several benchmark problems [5]. They are indeed generic in principle and
even adapt to a problem since they are derived from the constraints present in
the model. However in practice they are restricted to problems modeled using
constraints for which solution counting algorithms have been designed, a limita-
tion that is being pushed back as new algorithms are introduced. They are also
oriented toward solving feasibility problems and not so much optimization prob-
lems. Finally a technical incovenience is that some constraints are not expressed
on the main decision variables but instead on auxiliary variables dependent on
the former: these different sets of variables will each have their own solution
counting information, which will be difficult to mix or compare.

This paper proposes to answer the latter two challenges by generalizing exist-
ing solution counting algorithms for constraints and by relaying counting infor-
mation to the main decision variables through augmented element constraints.
Section 2 presents the technical contribution. Section 3 discusses its use for com-
binatorial optimization problems. Section 4 gives a first experimental evaluation
of the ideas through the Capacitated Facility Location Problem.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 170–175, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Indirect Solution Densities 171

2 Framework

The most interesting indicator arising from solution counting information has
been the solution density of a variable-value assignment, denoted σ(X, a, γ),
that is the proportion of solutions to a given constraint γ that assign value a to
variable X . One of the simplest and most effective branching heuristics built from
this is maxSD, which branches on the assignment with the overall highest solution
density (among all constraints) [5]. This section describes the adaptations to the
existing counting framework in order to recover indirect solution densities from
constraints on auxiliary variables.

2.1 Channelling Solution Densities through element Constraints

An element(X, f, Y) constraint, with f a fixed array of integers, states the
functional relationship Y = f(X), which maps every value in the domain of
finite-domain variable X to a value in the domain of finite-domain variable Y .
Its inverse, f−1, is potentially a one-to-many mapping. Therefore a constraint
expressed on Y will exhibit a solution density for some assignment Y = b which,
when transferred to X , should be “shared” between many values.

We define the multiplicity of a value b ∈ D(Y) as μ(b) = |{a ∈ X | f(a) = b}|.
The implementation of an element constraint is augmented with these multiplic-
ities and they are updated whenever the domain of X changes. Given branching
variable Xi, we wish to compute the solution density of assignment Xi = a with
respect to some constraint γ(Y1, . . . , Ym) in whose scope Xi does not appear but
to which it is connected through an element(Xi, f, Yi) constraint:

σ(Xi, a, γ) =
σ(Yi, f(a), γ)

μ(f(a))

Clearly
∑

a∈D(Xi)
σ(Xi, a, γ) = 1 since the domain of Yi is the image of f(Xi)

(i.e. the corresponding element is enforced) and
∑

b∈D(Yi)
σ(Yi, b, γ) = 1. Also

σ(Xi,−, γ) is nonnegative so it does define a solution density function.

2.2 Generalizing the Counting Algorithm for knapsack Constraints

The solution counting algorithm of every family of constraints must be general-
ized to take into account multiplicities for values. We outline the adaptation for
knapsack constraints, because these are used in the experimental section. That
adaptation will also trivially apply to regular constraints since they maintain
very similar data structures.

The domain consistency algorithm for knapsack builds and maintains a lay-
ered digraph that provides a compact encoding of its set of solutions: a path
from the first to the last layer spells out a complete satisfying assignment of
the variables in its scope, each of its arcs representing an individual assignment
[3]. The solution density algorithm counts the number of paths with a certain
property, e.g. assigning value a to variable X , through simple recursive formulas
[2]. We generalize the algorithm by introducing multiplicities and adding them

172 G. Pesant and A. Zanarini

as labels on every arc in the graph. When counting paths, they are used as a
multiplicative factor. For example, the formula for the number of incoming paths
from the initial layer to vertex b in the ith layer, ip(i, b), is generalized as follows:

ip(0, 0) = 1

ip(i, b) =
∑

(vi−1,b′ ,vi,b)∈Arcs

μ((vi−1,b′ , vi,b)) × ip(i − 1, b′), 1 ≤ i ≤ m

3 Stronger Back-Propagation from the Cost Variable

CP typically solves combinatorial optimization problems as a succession of fea-
sibility problems with increasingly tighter bounds on the objective. Many opti-
mization problems have a linear objective function. When such an objective is
expressed as a weighted sum constraint in CP, back-propagation from the cost
variable (or the bound on cost) to the decision variables is notoriously weak
because inexpensive bounds consistency is typically enforced. Using a knapsack
constraint can strengthen back-propagation but potentially at a prohibitive com-
putational cost since its propagation algorithm is pseudo-polynomial. To make
matters worse, individual cost values are often indexed by decision variables in-
stead of being multiplied by them. For example an objective function such as∑

ij cijXij with 0-1 variables will instead be expressed as
∑

i ci,Si with finite
domain variables Si such that Xij = 1 ⇔ Si = j. In practice one states element
constraints linking each Si to an auxiliary variable which represents its individual
cost, the latter variable appearing in the sum constraint stating the objective.

The approach described in the previous section provides the means to handle
combinatorial optimization problems more directly with counting-based heuris-
tics. Solution densities from the “objective” constraint will be expressed directly
on the main decision variables and put in the mix with other solution densities
coming from feasibility considerations. They indicate which assignments often
appear in “good enough” solutions, according to that constraint on the objective
value.

4 Experiments: Capacitated Facility Location

We ran experiments on the proposed approach using the Capacitated Facility
Location Problem (CSPLib problem 34). We are given a set of locations where we
may open a facility, each with a maximum capacity ci, to serve a set of customers,
each with a demand dj . The problem consists of assigning each customer to a
single facility while respecting the capacity constraints and minimizing the total
cost of the assignment. That cost is the sum of relevant service costs sij , defined
on location-customer pairs and of set-up costs oi for each open facility (i.e. a
location with at least one customer assigned to it). We frame it as a feasibility
problem by adding a constraint upper bounding that cost. This corresponds to
a single step in the usual CP approach to optimization.

Indirect Solution Densities 173

We use a set of 12 relatively small (10 facilities; 50 customers) instances from
Holmberg [1]. As for branching heuristics, we compared maxSD to some of the
best known generic heuristics in CP (dom/ddeg and IBM-Ilog Solver 6.3 IBS1).

knapsack((Xij)1≤i≤m,1, 1, 1) 1 ≤ j ≤ n (1)
knapsack((Xij)1≤j≤n, (dj)1≤j≤n, 0, ci) 1 ≤ i ≤ m (2)

Oi ≤
∑

1≤j≤n

Xij ≤ nOi 1 ≤ i ≤ m (3)

∑
1≤i≤m,1≤j≤n

sijXij +
∑

1≤i≤m

oiOi ≤ β (4)

Xij ∈ {0, 1} 1 ≤ i ≤ m, 1 ≤ j ≤ n (5)
Oi ∈ {0, 1} 1 ≤ i ≤ m (6)

Consider a general instance with n customers and m locations for the facili-
ties. The usual 0-1 model (1)-(6) does not behave well in CP (binary variables
are usually avoided, with good reason) and even though it features knapsack
constraints, only the packing constraints (2) provide non trivial solution densities
to be used by counting-based heuristics. On this model, none of the branching
heuristics produced any solution within the one-hour time limit.

alldiff(Cij) (7)
knapsack((Dij)1≤j≤k,1, 0, ci) 1 ≤ i ≤ m (8)
element(Cij , (d�)1≤�≤mk, Dij) 1 ≤ i ≤ m, 1 ≤ j ≤ k (9)
element(Cij , (si�)1≤�≤mk, Sij) 1 ≤ i ≤ m, 1 ≤ j ≤ k (10)

Cij < Ci,j+1 1 ≤ i ≤ m, 1 ≤ j ≤ k − 1 (11)
(Oi = 1) ⇔ (Ci1 ≤ n) 1 ≤ i ≤ m (12)∑

1≤i≤m,1≤j≤k

Sij +
∑

1≤i≤m

oiOi ≤ β (13)

Cij ∈ {0, 1, . . . , mk} 1 ≤ i ≤ m, 1 ≤ j ≤ k (14)
Dij ∈ {dj′ | 1≤j′≤n} ∪ {0} 1 ≤ i ≤ m, 1 ≤ j ≤ k (15)

Sij ∈ {si′j′ | 1≤i′≤m,1≤j′≤n} ∪ {0} 1 ≤ i ≤ m, 1 ≤ j ≤ k (16)
Oi ∈ {0, 1} 1 ≤ i ≤ m (17)

A facility-centered model that assigns customers to k predefined slots for each
location works much better, at least for counting-based heuristics. Since in gen-
eral we define more slots than there are customers, we add dummy customers
n + 1, n + 2, . . . , mk (in our experiments we use k = 6). Customer demands
and service costs are correspondingly extended with 0’s. Note that for instances

1 Impacts are fully initialized at the root node, approximated impacts are used to
preselect a subset of 5 variables, node impacts are computed on that subset and
further ties are broken randomly.

174 G. Pesant and A. Zanarini

Table 1. Performance of maxSD given different sources of solution densities

source of time(s) backtracks obj value
solution density avg median avg median avg

Cij 55.6 27.6 40744.5 19680 16354
Cij + Dij 34.9 9.2 19191.3 5749 16354
Cij + eltSD; 1.2 17.7 7.7 1243.9 4 14309
Cij + eltSD; 1.0 22.7 5.8 2323.6 5 12856

whose optimal solutions open relatively few locations, such a model would need-
lessly create too many slots. Model (7)-(17) features an alldiff constraint span-
ning the main decision variables Cij and knapsack packing constraints for each
facility. However these latter ones are expressed on auxiliary variables Dij . Con-
straints (11) break customer symmetries at a facility, (12) link the Oi variables,
and (13) states a bound on the objective value.

Heuristic dom/ddeg still does not produce any solution within the one-hour
time limit while IBS finds a solution to 4 out of 12 instances. Randomized restarts
[4] help IBS solve more instances, though not all of them. maxSD performs much
better, as indicated in Table 1 (and here randomized restarts generally worsened
performance). In all four variants, the upper bound on cost was set to 1.8 times
the optimal value. The first two do not use augmented element constraints (the
second variant branches on both Cij and Dij variables) whereas the last two do
use them, both for the knapsack packing constraints and for the service costs. For
these service costs, individual knapsack constraints were stated for each facility
and the upper bound was set to 1.2 (third variant) and 1.0 (fourth variant)
times the optimal value divided by m, the number of facilities. We observe that
the additional guidance provided by the indirect solution densities does decrease
search effort and also contributes to improve the cost of the solutions found.
Note that lowering the shared 1.8 bound or adding a bound per facility as above
significantly increased search effort for the first two variants and caused several
instances to time out.

5 Conclusion

In this paper, we proposed two generalizations of counting algorithms to over-
come the limit of having solution density branching information on auxiliary
variables. These algorithms applied to a benchmark problem showed promis-
ing results, underlining once more the efficiency of counting-based heuristics.
Among the possible improvements, the approximated algorithm for computing
the solution densities of the knapsack constraint [2] can help whenever the upper
bound on the knapsack is quite large. We plan to extend this approach to other
constraints such as alldifferent or global-cardinality; a possible avenue
would be to use the multiplicities as entries of the adjacency matrix and com-
pute the solution density with permanent upper bounds for generic nonnegative
matrices [6].

Indirect Solution Densities 175

References

1. Holmberg, K., Ronnqvist, M., Yuan, D.: An exact algorithm for the capacitated
facility location problems with single sourcing. European Journal of Operational
Research 113(3), 544–559 (1999)

2. Pesant, G., Quimper, C.-G.: Counting Solutions of Knapsack Constraints. In:
Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 203–217.
Springer, Heidelberg (2008)

3. Trick, M.A.: A dynamic programming approach for consistency and propagation for
knapsack constraints. Annals of Operations Research 118, 73–84 (2003)

4. Walsh, T.: Search in a small world. In: Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 1999, pp. 1172–1177. Morgan
Kaufmann Publishers Inc., San Francisco (1999)

5. Zanarini, A., Pesant, G.: Solution Counting Algorithms for Constraint-Centered
Search Heuristics. Constraints 14, 392–413 (2009)

6. Zanarini, A., Pesant, G.: More Robust Counting-Based Search Heuristics with Alld-
ifferent Constraints. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,
vol. 6140, pp. 354–368. Springer, Heidelberg (2010)

Using Hard Constraints for Representing Soft
Constraints

Jean-Charles Régin

Université de Nice - Sophia Antipolis, I3S - CNRS
930 Route des Colles - BP 145

06903 Sophia Antipolis Cedex, France
jcregin@gmail.com

Abstract. Most of the current algorithms dedicated to the resolution
of over-constrained problems, as PFC-MRDAC, are based on the search
for a support for each value of each variable taken independently. The
structure of soft constraints is only used to speed-up such a search, but
not to globally deduce the existence or the absence of support. These
algorithms do not use the filtering algorithms associated with the soft
constraints.

In this paper we present a new schema where a soft constraint is
represented by a hard constraint in order to automatically benefit from
the pruning performance of the filtering algorithm associated with this
constraint and from the incremental aspect of these filtering algorithms.
In other words, thanks to this schema every filtering algorithm associated
with a constraint can still be used when the constraint is soft. The PFC-
MRDAC (via the Satisfiability Sum constraint) algorithm and the search
for disjoint conflict sets are then adapted to this new schema.

1 Introduction

A constraint network (CN) consists of a set of variables, each of them associated
with a domain of possible values, and a set of constraints linking the variables and
defining the set of allowed combinations of values. The search for an assignment
of values to all variables that satisfies all the constraints is called the Constraint
Satisfaction Problem (CSP). Such an assignment is a solution of the CSP.

Unfortunately, the CSP is an NP-Hard problem. Thus, many works have been
carried out in order to try to reduce the time needed to solve a CSP. Some of the
suggested methods turn the original CSP into a new one, which has the same
set of solutions, but which is easier to solve. The modifications are done through
filtering algorithms, which remove from domains values that cannot belong to
any solution of the current CSP. If the cost of such an algorithm is less than
the time required by the backtrack algorithm to discover many times the same
inconsistency, then the solving will be accelerated.

It often happens that a CSP has no solution. In this case we say that the
problem is over-constrained, and the goal is then to find a good compromise.
One of the most usual theoretical frameworks is called the Maximal Constraint
Satisfaction Problem (Max-CSP). A solution of a Max-CSP is a total assignment
that minimizes the number of constraint violations.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 176–189, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Using Hard Constraints for Representing Soft Constraints 177

Almost all existing techniques for solving Max-CSP, as PFC-MRDAC [2],
consider that the filtering algorithm associated with a constraint can be used
only to speed up the search for, or the proof of absence of, a support. Since
the constraints are soft (i.e. they can be violated) it is considered that it is not
possible to directly use the filtering algorithm associated . Only two existing
approaches exploit the structure of the constraints: the search for conflict sets
(i.e. a set of soft constraints which leads to a failure if all these constraints are
considered hard) [5] and the design of specific filtering algorithms for global soft
constraints [3], for instance the alldiff constraint. Our goal is to explain how a
filtering algorithm associated with a constraint can be used in an efficient way
even if the constraint can be violated.

In this paper, we propose a general schema, called S2H (Soft to Hard), which
is able to use every filtering algorithm associated with a constraint when the
constraint is soft. The originality of our approach is to represent each soft con-
straint by a hard constraint and to manage the detection of failures. Each hard
constraint is defined on new variables that are linked to the variables involved
in a soft constraint by a specific hard constraint. This specific hard constraint
will take into account the possible failure of the hard constraint representing the
soft one. This approach has two advantages: first it can be easily used by any
constraint programming solver system provided that the failure can be caught,
second we immediately and automatically benefit from the pruning performance
of the filtering algorithm associated with the soft constraint, because this is
managed by the solver. Moreover, we will show how we can benefit from the in-
cremental aspect of the filtering algorithms. The main interest of this approach
is that it could lead to an improvement of the resolution of real world applica-
tions involving soft constraints similar as the improvement obtained with solvers
when the filtering algorithms associated with constraints have been introduced.

Furthermore, we give two possible instantiations of this schema corresponding
to two different filtering algorithms that have been proposed to improve the
resolution of over-constrained problems: the partition based filtering and the
conflict sets based filtering.

This paper is organized as follows. First we recall some notions about con-
straint programming, and the principle of the filtering algorithms associated
with the Satisfiability sum constraint that deals with the soft constraints of a
problem. Then, we emphasize on an example the usefulness of the structure of
a constraint. Next, the S2H-Schema is presented in details. We explain how the
S2H-Schema can be instantiated in order to efficiently implement the best fil-
tering algorithm for over constrained problems. At last, we discuss about the
implementation of the S2H-Schema in a solver.

2 Background

2.1 Constraint Network

A constraint network N is defined as a set of n variables X = {x1, . . . , xn}, a
set of domains D = {D(x1), . . . , D(xn)} where D(xi) is the finite set of possible

178 J.-C. Régin

values for variable xi, and a set C of constraints between variables. A constraint
C on the ordered set of variables X(C) = (xi1 , . . . , xir) is a subset T (C) of the
Cartesian product D(xi1)× · · · ×D(xir) that specifies the allowed combinations
of values for the variables xi1 , . . . , xir . An element of D(xi1) × · · · × D(xir)
is called a tuple on X(C). |X(C)| is the arity of C. A value a for a variable x
is often denoted by (x, a). A tuple τ on X(C) is valid if ∀(x, a) ∈ τ, a ∈ D(x). C
is consistent iff there exists a tuple τ of T (C) which is valid. A value a ∈ D(x) is
consistent with C iff x �∈ X(C) or there exists a valid tuple τ of T (C) in which
a is the value assigned to x.

2.2 Satisfiability Sum Constraint

Max-CSP can be expressed by a satisfiability sum constraint [5]:

Definition 1. Let C = {Ci, i ∈ {1, . . . , m}} be a set of constraints, and S[C] =
{si, i ∈ {1, . . . , m}} be a set of variables and unsat be a variable, such that a one-to-
one mapping is defined between C and S[C]. A Satisfiability Sum Constraint is the
constraint ssc(C, S[C], unsat) defined by:

[unsat =
m∑

i=1

si] ∧
m∧

i=1

[(Ci ∧ (si = 0)) ∨ (¬Ci ∧ (si = 1))]

Notation 1. Given a ssc(C, S[C], unsat), a variable x, a value a ∈ D(x) and K ⊆ C:
• max(D(unsat)) is the highest value of current domain of unsat;
• min(D(unsat)) is the lowest value of current domain of unsat;
• minUnsat(C, S[C]) is the minimum value of unsat consistent with ssc(C, S[C], unsat);
• S[K] is the subset of S[C] equal to the projection of variables S[C] on K;
• X(C) is the union of X(Ci), Ci ∈ C.

The variables S[C] are used in order to express which constraints of C must be
violated or satisfied: value 0 assigned to s ∈ S[C] expresses that its corresponding
constraint C is satisfied, whereas 1 expresses that C is violated1. Variable unsat
represents the objective, that is, the number of violations in C, equal to the
number of variables of S[C] whose value is 1. Note that no hypothesis is made on
the arity of constraints C. And if a value is assigned to si ∈ S[C], then a filtering
algorithm associated with Ci ∈ C (resp. ¬Ci) can be used in a way similar to
classical CSPs. Similarly if all values of a variable x are not consistent with Ci

(resp. ¬Ci) then si = 1 (resp. 0).
Throughout this formulation, a solution of a Max-CSP is an assignment that

satisfies the ssc with the minimal possible value of unsat. A lower bound of the
objective of a Max-CSP corresponds to a necessary consistency condition of the
ssc.
From the definition of minUnsat(C, S[C]) we have:

Property 1. If minUnsat(C, S[C]) > max(D(unsat)) then ssc(C, S[C], unsat)
is not consistent.
1 An extension of the model can be performed [4], in order to deal with Valued CSPs

[1]. Basically it consists of defining larger domains for variables in S[C].

Using Hard Constraints for Representing Soft Constraints 179

Thus, any lower bound of minUnsat(C, S[C]) provides a necessary condition of
consistency of a ssc.
The different domain reduction algorithms established for Max-CSP correspond
to specific filtering algorithms associated with the ssc.

2.3 Ssc: Partition Based Filtering

A possible way for computing a lower bound is to perform a sum of independent
lower bounds of violations, one per variable (See [2].) For each variable a lower
bound can be defined by:

Definition 2. Given x a variable, a a value of D(x), K a set of constraints of C,
#inc((x, a),K) = |{C ∈ K s.t. (x, a) is not consistent with C}|.
#inc(x,K) = mina∈D(x)(#inc((x, a),K)).

The sum of these minima with K = C cannot lead to a lower bound of the
total number of violations, because some constraints can be taken into account
more than once2. In this case, the lower bound can be overestimated, and an
inconsistency could be detected while the ssc is consistent. Consequently, for
each variable, an independent set of constraints must be considered.
Such a result is obtained by associating with each constraint C one and only
one variable x involved in the constraint: C is then taken into account only for
computing the #inc counter of x. Therefore, the constraints are partitioned w.r.t
the variables that are associated with:

Definition 3. Given a set of constraints C, a var-partition of C is a partition
P(C) = {P (x1), ..., P (xk)} of C in |X(C)| sets such that ∀P (xi) ∈ P(C) : ∀C ∈
P (xi), xi ∈ X(C).

Given a var partition P(C), the sum of all #inc(xi, P (xi)) is a lower bound of
the total number of violations, because all sets belonging to P(C) are disjoint;
thus we have:

Definition 4. ∀P(C) = {P (x1), ..., P (xk)},
LB(P(C)) =

∑
xi∈X(C) #inc(xi, P (xi)).

Property 2. ∀P(C) = {P (x1), ..., P (xk)}, If LB(P(C)) > max(D(unsat))

then ssc(C, S[C], unsat) is not consistent.

The quality of such a lower bound depends on the var-partition that is chosen.
The lower bound of Property 2 can also be used to detect some inconsistent
values of a variable x:

Theorem 1. ∀P(C) a var-partition of C,∀x ∈ X(C),∀a ∈ D(x), if #inc((x, a), P (x))

+ LB(P(C − P (x))) > max(D(unsat)) then a can be removed from its domain.

2 For instance, given a constraint C and two variables x and y involved in C, C can
be counted in #inc(x, C) and also in #inc(y, C).

180 J.-C. Régin

2.4 Ssc: Conflict Set Based Filtering

Some inconsistencies are not taken into account by the previous filtering al-
gorithm because it is based on counters of direct violations of constraints by
values. Therefore another filtering algorithm based on successive computations
of disjoint conflict sets were proposed in [5].

Definition 5. A conflict set is a subset K of C which satisfies:
minUnsat(K, S[K]) > 0.

A conflict set leads to at least one violation in C. Consequently, if there are q
disjoint conflict sets of C then q is a lower bound of minUnsat(C, S[C]). They
must be disjoint to guarantee that all violations are independent.

Property 3. Let Q be a set of disjoint conflict sets of C. If |Q| > max(D(unsat))
then ssc(C, S[C], unsat) is not consistent.

3 The S2H Schema

The main issue of algorithms dedicated to the resolution of over constrained
problems is the necessity to detect if a given value is consistent with a constraint.
Indeed, it is necessary to know which values are violated by a soft constraint,
for instance to update #inc counters.

In existing solvers, each constraint is associated with a filtering algorithm,
which is able to remove some values that are not consistent with the constraint,
and to perform this operation only when an event, which can lead to some re-
moval, arises. Using the filtering algorithm to detect some inconsistent values
is an efficient way, better than systematically and individually check for consis-
tency. Moreover, without loss ogf generality we can consider that any CP solver
(which is programmable) provides:

– a way to automatically notify a variable that one of its values has been
removed when applying a filtering algorithm

– a way to call some filtering algorithms when some events on the domain of
variables happen.

Thus, if a constraint is considered as hard, then we can use the solver in order
to update data structures only when specific values are removed. Therefore, if
we represent soft constraints by hard constraints we will be able to benefit from
all these mechanisms.

Currently, solvers do not use complex mechanisms for dealing with soft con-
straints. They are usually limited to basic behaviors. Disjunctive constraints is a
good example. Gecode, Comet or ILOG Solver do not implement the construc-
tive disjunction [6]. They mainly implement disjunctive constraints by checking
whether each part of the disjunction is satisfied or not. Consider for instance, the
constraint (C1 or C2). The filtering algorithms associated with each constraint
are not used. The solver just checks if the constraints C1 or C2 are violated. There

Using Hard Constraints for Representing Soft Constraints 181

is no filtering code which is used, so there is no need to catch some possible fail-
ures because the mechanism does not call any internal code that could fail. Such
a mechanism is clearly weak and insufficient for implementing the constraints
we mentioned in Section 2, because we want to use the existing algorithms as-
sociated with constraints even if there are soft. The constructive disjunction is
complex to implement this is why it is rarely implemented. For some cases, it is
possible to implement it in a specific way, because we have only one constraint
that could fail. However, the problem we consider is much more general than
constructive disjunction and we need a more general mechanism

The representation of soft constraints by hard constraints is not an easy
task because a soft constraint should not necessarily be satisfied in all solu-
tions whereas a hard constraint should have to. Thus, if we want to represent a
soft constraint by a hard constraint, then we are faced to the following two main
problems:

– The deductions made by a filtering algorithm are not necessary valid because
the constraint is not obligatorily satisfied. Hence, these modifications cannot
be effective on the variables on which the soft constraint is defined.

– The hard constraint corresponding to a soft constraint can fail and this
failure is not a reason to backtrack.

The S2H (Soft to Hard) Schema deals with these problems. Consider a set S of
soft constraints. Roughly, the principle of this schema is to copy the variables
involved in constraints of S and then to add to the solver as hard constraints
the constraints of S defined on the copied variables. Then some mechanisms are
added in order to be able to:

• update the copied variables when the original variables are modified,
• use the modifications which occur on the domains of the copied variables
• catch some possible failure of a constraint of S.

If such a failure happens, then the S2H schema is able to remove all the hard
constraints corresponding to the soft ones that have been added and to continue
the search as if these hard constraints have never been added.

The S2H schema is based on 2 operations:

1. creation: the hardening of soft constraints operation is applied
2. catch of a failure and deletion: if certain constraints fail then the solver does

not consider that a global inconsistent state is detected. Then, some hard
constraints must be removed from the solver in order to continue the search.

3.1 Hardening of Soft Constraints

Definition 6. Given S a set of soft constraints involving the variables X(S) =
{x1, ..., xk}, SoftManager a manager of soft constraints associated with 2 noti-
fication methods: whenDomainReduction, whenFail. The hardening of soft
constraints is the operation that consists in:

182 J.-C. Régin

1. for each variable x ∈ X(S) creating a new variable dcopy(x,S), called the
directed copy of x.

2. for each constraint C ∈ S adding to the problem as hard constraint the
constraint hard(C) which is the constraint C defined on the directed copies
of the variables of X(C). Hard(S) denotes the set of these constraints.

3. adding between each pair of variables {x, dcopy(x,S)} a constraint
varToCopiedVarCt(x, dcopy(x,S)) stating that D(x) ⊇ D(dcopy(x,S)).
DcopyCt(S) denotes the set of these constraints.

4. for each variable dcopy(x,S) linking the notification method whenDomainRe-
duction to dcopy(x,S). This method is called each time the domain of
dcopy(x,S) is modified by a constraint hard(C) of Hard(S) and notifies
SoftManager of the modifications. The parameters of this method are
SoftManager,x,a and the constraint C.

5. for each constraint CH ∈ Hard(S) ∪ DcopyCt(S) linking the notification
method whenFail to CH . This method is called when the constraint CH

fails. The parameters of this method are SoftManager, S.

An example of the application of the Hardening of soft constraints is given by
Figure 1.

The constraint varToCopiedVarCt(x, dcopy(x,S)) ensures that, when x is
modified, dcopy(x,S) is accordingly modified. When a directed copy dcopy(x,S)
is modified we cannot modify x and we use notification mechanism. The notifica-
tion methods are used to update some data structures required to efficiently im-
plement the filtering algorithms associated with the Satisfiability sum constraint.
These data structures are encapsulated in the manager of soft constraints.

More precisely, each time a value a is removed from the domain of dcopy(x,S),
a directed copy of x, whenDomainReduction is called. It notifies the manager
of soft constraints that the constraint C is violated by (x, a). Thus, this method
establishes a link from the directed copy of variable to the variable. Since the
hardening of a soft constraint is a hard constraint we benefit from its pruning
performance and from its incremental mechanism of triggering of the filtering
algorithm associated with it. Therefore, there is no need to ask for each value
the constraints it violates. This result is automatically obtained by using the
notification method.

Similarly, if a constraint in Hard(S) ∪ DcopyCt(S) fails, then whenFail is
called. This method notifies the manager of soft constraints that a constraint in
S will be violated if S is considered as a set of hard constraints. In this case,
some operations have to be done, because a failure is detected which is more
complex than the deletion of one value of a domain.

3.2 Catch of the Failure and Deletion

Our problem is to manage a possible failure of the hard representation of a
soft constraint, and to be able to continue the search as if these constraints
had never been added. Consider S a set of constraints and suppose that the
hardening operation has been applied on S. Then, the solver must be able to
perform two operations during the search for solutions:

Using Hard Constraints for Representing Soft Constraints 183

Consider two variables x and y with D(x) = [0..10] and D(y) = [0..9], three hard
constraints (x > 5), (y < 5) and (x < 10), one soft constraint (x < y), and
softManager a manager of soft constraints.

Suppose that whenDomainReduction prints the domain of the copied vari-
able and that whenFail prints the constraints that are defined soft; and that
SoftManager.addSoft(x < y) involves the hardening of the soft constraint (x < y).
Then, we can trace the behavior of the following pseudo-code:

Define x with D(x) = [0..10] and y with D(y) = [0..9]
SoftManager.addSoft(x < y)

begin trace: create x′ with D(x′) = [0..10]; y′ with D(y′) = [0..9]
add varToCopiedVarCt(x, x′) and varToCopiedVarCt(y, y′)
add (x′ < y′); this constraint modifies the domains of x′ and y′

x′ is modified then whenDomainReduction is called and prints D(x′) =
[0..8]; y′ is modified then whenDomainReduction is called and prints
D(x′) = [1..9]. end trace

add(x > 5)

begin trace: D(x) = [6..10]
constraint varToCopiedVarCt(x, x′) is triggered and D(x′) = [6..8]; func-
tion whenDomainReduction is called and prints D(x′) = [6..8]; constraint
(x′ < y′) is triggered and y′ is modified; function whenDomainReduction
is called and prints D(y′) = [7..9]. end trace

add(y < 5)

begin trace: D(y) = [0..4]
constraint varToCopiedVarCt(y, y′) is triggered and fails; function when-
Fail is called and prints (x < y); the constraints varToCopiedVarCt(x, x′),
varToCopiedVarCt(y, y′) and (x′ < y′) are removed. end trace

add(x < 10)

begin trace: D(x) = [6..9]; There is no other constraints to trigger and the
program continues normally. end trace

Fig. 1. an Example of hardening of soft constraints

– to catch the failure of any constraint of Hard(S) ∪ DcopyCt(S). That is, a
failure of any constraint of Hard(S) ∪ DcopyCt(S) must not be considered
as a global detection of an inconsistency.

– to delete the set of constraints Hard(S) ∪ DcopyCt(S) when one of them
fails.

These operations can be implemented in different ways. This is the purpose of
section 5.

184 J.-C. Régin

4 Instantiation of the S2H Schema

An instantiation of the S2H Schema is defined by the notification methods when-
DomainReduction and whenFail and a specific instantiation of the manager
of soft constraints. In the object language terminology, this means that we are
provided with a class, for instance SoftManager, containing two virtual member
functions (the two notification methods.) Then, an instantiation of S2H Schema
is defined by a subclass of this class that implements these virtual functions.

All the other parts of this schema are handled by the solver.

4.1 Partition Based Filtering

The filtering algorithm is based on Theorem 1. Thus, its implementation is based
on the computation of #inc counters and especially on the update of these
counters.

The S2H method is instantiated for each soft constraint (i.e. S = {C}) but all
these instantiations share the same manager of soft constraints. So, the manager
of soft constraints is unique. This object associates with each value a of each
variable x on which a soft constraint is defined, the list of constraints that are
violated by (x, a).

The notification methods are then defined as follows:

– whenDomainReduction method:
when whenDomainReduction(SoftManager, x, a, C) is called, constraint
C is added to the list of constraints that are violated by (x, a). Then #inc
counter associated with (x, a) and x are accordingly modified.

– whenFail method: when whenFail(SoftManager, {C}) is called, for each
value a of each variable x involved in C, C is added to the list of constraints
that are violated by (x, a)

Furthermore, the manager of soft constraints is also in charge of the #inc coun-
ters in regards to the current var-Partition. This object will notify the Satis-
fiability sum constraint of the modification of #inc counters. That constraint
will then manage the possible domain reductions based on the application of
Theorem 1.

4.2 Conflict Set Based Filtering

The S2H Schema can help us to efficiently implement the conflict sets based
filtering algorithm, notably, to maintain incrementally the number of disjoint
conflict sets detected.

First, we recall some principles on the computation of disjoint conflict sets,
then we present the instantiation of S2H-Schema to improve the current imple-
mentation.

Consider that Q = {CS1, .., CSk} is a set of disjoint conflict sets of C. Our
goal is to find a set of disjoint conflict sets of greatest size (cf property 3). It is

Using Hard Constraints for Representing Soft Constraints 185

possible that, during the search for solutions, some new conflict sets can be found
and thus the lower bound of the number of constraints that will be violated can
be increased.

There are several ways to try to improve the number of disjoints conflict sets
detected:

1. by recomputing the conflict sets from scratch,
2. by studying the set of constraints of C which do not belong to any set con-

tained in Q. This set of constraints can form some new conflict sets,
3. by refining the detection of conflict sets within the conflict sets of Q.

The first possibility does not seem realistic. In fact, the computation of disjoint
conflict sets is costly. Determining if a set of constraints S satisfies the condition
of definition 5 is a NP-complete problem. Indeed, it consists of checking the
global consistency of the constraint network N [S] defined by S and by the set
of variables involved in the constraints of S. However, the identification of some
conflict sets is sufficient. Instead of performing global consistency, we can easily
identify a subset of constraints of a set S which forms a conflict set. The idea
is to successively add the constraints of S into a solver until a failure occurs.
All the constraint that have been added until this failure form a conflict set. A
set of disjoint conflict sets is then obtained by repeating the previous algorithm
on the constraints that are not yet member of a computed conflict set (each
computation starts from scratch). It is also possible to refine this detection of
conflict as mentioned in [5].

The problem of the approach 1 is that the mechanism is not obviously incre-
mental. Nevertheless, we can use the previous computations to try to improve
point 2 and 3 mentioned before.

The set of constraints C can be split into different parts: one for each conflict
set of Q and one for the constraints of C which are not involved in any conflict
set of Q. We will denote by NDCS (not detected conflict set) this latter set of
constraint. More formally, C can be written: C = CS1 ∪ ... ∪ CSk ∪ NDCS.

First, consider the NDCS set. The S2H-Schema can be used to efficiently
detect during the search for solutions if this set contains a conflict set. The S2H
method is instantiated as follows:

• S = NDCS
• whenDomainReduction method is not used
• whenFail method: when whenFail(SoftManager,S) is called, the manager
of soft constraints notifies the Satisfiability sum constraint that a new conflict
set has been detected. Then, we search whether the set of constraints S contains
some disjoint conflict sets by using the algorithm presented before, and the set
of disjoint conflict sets is accordingly updated.

The constraints which do not belong to a conflict set form the new NDCS set.
The S2H-Schema is then applied to this new set.

186 J.-C. Régin

The Satisfiability sum constraint will then manage the possible domain re-
ductions based on the application of property 3 or the filtering algorithm given
in [5].

Now, consider a conflict set CS = {C1, ..., Ck}. If this conflict set has been
computed by using the algorithm we mentioned before, then we know that the
set of constraints {C1, ..., Ck−1} is not detected as a conflict set by the solver.
This means that this set is an NDCS and we can apply the previous method
on it. Therefore, for each conflict set an instantiation of S2H-Schema will be
used in order to detect some subsets of conflict sets that also form a conflict set.
Moreover, if a failure is detected in a set {C1, ..., Ck−1}, then the constraint Ck

is released. That is, Ck is no longer a member of a conflict set, and Ck is added
to the NDCS set of C. Then, this addition may lead to a failure of the NDCS
set. In this case, the previous algorithm is applied. The current instantiation of
the S2H-Schema for NDCS is accordingly modified in order to take into account
Ck

3. Furthermore, the S2H-Schema is used to maintain the detection of subset
of the conflict sets that have been newly detected.

5 Implementation of the S2H Schema

Notification methods are usually easy to implement. In fact, most of the solvers
provide the user with methods that are called when certain events on the do-
main of a variable occur. For instance, in ILOG Solver, IlcDemon instances are
especially well suited to be used for this purpose. In this case, we just have to
define one IlcDemon per variable, and to link this demon to each modification of
the directed copy of the variable (IlcWhenDomain event in ILOG Solver.) Then,
each IlcDemon will be triggered when the domain of the corresponding variable
will be modified.

The hardening of soft constraints, the catch of the failure and the deletion of
some hard constraints is often a difficult task. We propose to give some details
on the implementation problems and to give some possible general solutions that
concern most of the solvers.

Generally, a solver works as follows. At the top level, the constraints are added,
and the filtering algorithms associated with them are called. If a filtering removes
some values of some variables, then a propagation is triggered, that is the filtering
algorithms associated with the constraints involving a modified variables are
called again and so on. Then, the search for a solution starts. This search creates
choice points (i.e. nodes of a tree search). In other words, a decision is made
and the corresponding constraint, which is usually an assignment constraint, is
added to the solver. The propagation mechanism is then triggered. When there
is nothing to propagate (the current choice point is a success), a new choice point
is made. On the other hand, if a failure occurs the current choice is abandoned.
The consequences are:

3 Either the current instantiation of the S2H-Schema for NDCS is modified, or it is
deleted and a new one is created.

Using Hard Constraints for Representing Soft Constraints 187

– Everything that has been allocated since the choice point is destroyed.
– All filtering algorithms must be immediately stopped.
– All the propagation queues are emptied.
– A backtrack/undo is done.

Thus, every solver is able to perform these kinds of operations.
In order to manage the operations required by any instantiation of S2H-

Schema: catch of the failure, deletion of constraints; we propose to study three
kinds of possibilities:
1. Creation of a new choice point
2. Use of an independent solver in parallel.
3. Internal addition and catch of the failure

In next paragraphs we discuss these solutions, through the example of a set of
constraint S containing the constraint C: x < y, on which the hardening of soft
constraint operation is applied.

5.1 Creation of a New Choice Point

The directed copy of variables and the constraint hard(S) ∪ DcopyCt(S) are
defined within the very same solver but they are encapsulated inside a new
choice point. For instance, this operation can be easily done in ILOG Solver by
using function IloSolver::solve.

The catch of a failure and the deletion of constraints are easily managed
because when a failure occurs the solver has just to abandon the choice point.
The main drawback of this method is that the constraints added inside the new
choice point are added from scratch. Therefore, no incremental mechanism can
be used. Moreover, it is necessary to create a choice point for each instantiation
of S2H-Schema. This fact can be prohibitive to implement the partition based
filtering algorithm. This is not the kind of result we aim to obtain.

5.2 Use of an Independent Solver in Parallel

The principle is to define the directed copy of variables and hard(S) into another
solver. The constraints between a variable and its directed copy are defined in
the initial solver.

The advantage is that there is no problem due to failure of dcopy(x,S) <
dcopy(y,S) because this constraint is defined in a specific solver. There is also
no problem of continuation of the main solver. The deletion hard(S) is simply
done by stopping to call the other solver.

However, a main difficulty is the necessity to ensure a simultaneous backtrack-
ing of the two solvers and also to implement the notification methods that are
defined on variables of different solvers. For instance, assume that initial domains
are D(x) = [0, 10], D(dcopy(x,S) = [0, 10]. Assume that domains are reduced as
follows: D(x) = [3, 7] and D(dcopy(x,S)) = [3, 7]. If a backtrack occurs, then
we will have D(x) = [0, 10]. The problem is then to backtrack also the second
solver, that is, to update D(dcopy(x,S)) = [0, 10].

Moreover, this solution requires having one solver for each instantiation of
S2H-Schema.

188 J.-C. Régin

5.3 Internal Addition and Catch of Failure

The addition of constraints performed by the hardening of soft constraints is
made in the same solver. If (dcopy(x,S) < dcopy(y,S)) or a constraint of
DcopyCt({C}) fails , then this failure has to be caught, and all the constraints
added by the hardening of soft constraints operation must be removed. This
means that:

– The current code in which the failure occurs has to be abandoned.
– The parent constraint of the failing constraint and all the descendant con-

straints of the parent constraint has to be abandoned.
– A global failure must not be triggered.
– Some hard constraints have to be removed.

The last point is fundamental. The implementation of this solution depends on
the management of the failure by the solver and on the management of the
addition/removal of constraints.

This solution can be particularly difficult to implement in a constraint solver,
but it is clearly the most promising with respect to efficiency and memory con-
sumption. It also benefits from all the advantages of a solver.

5.4 Summary

The following table recapitulates the advantages and the drawbacks of each
method.

Method Advantages Drawbacks
Independent No problem of failure Requires simultaneous
Solver backtracks and synchronization

Hard to implement
No incrementality
Requires One Solver
per instantiation

Creation of a No problem of failure Hard Constraint
New Choice Point always added from scratch

No incrementality
Requires One Choice Point
per instantiation

Internal Addition Incremental. Simple. Requires to change classical
And Catch of Failure Easy to use behavior of a solver

We implemented the S2H method in ILOG Solver. This was available as a
beta functionality.

We tried to implement the use of independent solvers, but we encounter prob-
lems with the memory management and the fact that ILOG Solver was not
designed for having several solvers at the same time. However, with some other
solvers this method could be certainly efficient and competitive with teh catch
of the failure.

Using Hard Constraints for Representing Soft Constraints 189

We also considered the encapsulation into choice point. First, it is really slow
in regards to the other approaches (10 times slower in general). In fact, the
creation of a choice point is not a simple task in ILOG Solver. However, the
main issue is the lost of the incrementality. After each instantiation the same
constraints are posted and reposted... In addition we encounter some problems
because ILOG Solver is not reentrant. In conclusion, we think that this method
is not really good.

At last, we modified the internal code of ILOG Solver in order to be able to
catch the failures. This method performs well.

6 Conclusion

In this paper, we have proposed a general schema, called S2H (Soft to Hard),
which is able to exploit the filtering algorithm associated with a constraint even
if this constraint is soft. The advantage of this approach is double: first it can
be easily used by any constraint programming solver system provided that the
failure can be caught, second we immediately and automatically benefit from the
pruning performance of the filtering algorithm associated with the soft constraint
because this is managed by the solver.

Furthermore, two instantiations of this schema have been presented, corre-
sponding to the two different filtering algorithms that have been proposed to
improve the resolution of over-constrained problems: the partition based filter-
ing and the conflict sets based filtering. And, efficient implementation of these
algorithms is now available.

The implementation of the S2H-Schema in a solver is also discussed.

Acknowledgements

We would like to thank T. Petit and J-F. Puget for their useful comments.

References
1. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.:

Semiring-based csps and valued csps: Frameworks, properties, and comparison. Con-
straints 4, 199–240 (1999)

2. Larrosa, J., Meseguer, P., Schiex, T.: Maintaining reversible DAC for Max-CSP.
Artificial Intelligence 107, 149–163 (1999)

3. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained
problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–465. Springer,
Heidelberg (2001)

4. Petit, T., Régin, J.-C., Bessière, C.: Meta constraints on violations for over-
constrained problems. In: Proceedings ICTAI 2000, pp. 358–365 (2000)

5. Régin, J.-C., Petit, T., Bessière, C., Puget, J.-F.: New lower bounds of constraint vio-
lations for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239,
pp. 332–345. Springer, Heidelberg (2001)

6. van Hentenryck, P., Saraswat, V., Deville, Y.: Design, implementation, and eval-
uation of the constraint language cc(fd). Journal of Logic Programming 37(1-3),
139–164 (1998)

The Objective Sum Constraint

Jean-Charles Régin1 and Thierry Petit2

1 Université de Nice-Sophia Antipolis, I3S, CNRS
jcregin@gmail.com

2 École des Mines de Nantes, LINA, CNRS
thierry.petit@mines-nantes.fr

Abstract. Constraint toolkits generally propose a sum constraint where a global
objective variable should be equal to a sum of local objective variables, on which
bound-consistency is achieved. To solve optimization problems this propagation
is poor. Therefore, ad-hoc techniques are designed for pruning the global objec-
tive variable by taking account of the interactions between constraints defined on
local objective variables. Each technique is specific to each (class of) practical
problem. In this paper, we propose a new global constraint which deals with this
issue in a generic way. We propose a sum constraint which exploits the propaga-
tion of a set of constraints defined on local objective variables.

1 Introduction

A lot of optimization problems aim to minimize (or maximize) the sum (or a scalar
product) of some variables. The variable equals to that sum is usually called the ob-
jective variable and denoted by obj, and the sum is called the objective constraint.
For convenience, we will call sub-objective variables the variables involved in the sum
while the other variables but obj will be called problem variables. The sub-objective
variables are denoted by sobji and the problem variables by xi.

Lower bounds of the objective variable are computed from the sum constraint by
considering minimum values of the sub-objective variables. Thus, we usually state that∑

sobji = obj where y denotes the minimum value in the domain of the variable y.
The minimum value of the sub-objective variables are computed from the constraints
(different from the objective constraint) which involve them.

This model has three main drawbacks:

– The filtering algorithm associated with the objective constraint is weak although it
should deserve more attention because it is often the most important one.

– The fact that some problem variables may occur in several constraints, each involv-
ing a different sub-objective variable, is ignored.

– The fact that some sub-objective variables may be involved in several constraints
(different from the objective constraint) is ignored while it is important [3,4].

This paper tries to remedy to these drawbacks. The main idea is to change the way
the sub-objective constraints are propagated. Consider, for instance, that we have the

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 190–195, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

The Objective Sum Constraint 191

following problem to solve: obj = sobj1 + sobj2 has to be minimized while respecting
the constraints sobj1 = 2x+ y and sobj2 = z−x with x taking its value in [0, 10], y in
[0, 10] and z in [10, 20]. The classical filtering algorithm will lead to sobj1 = 2∗0+0 =
0 and sobj2 = 10 − 10 = 0, therefore obj = 0. However, if we look at problem from
the point of view of the variable x, this means that we need to find a value for x such
that sobj1 +sobj2 is minimized with sobj1 = 2x+y and sobj2 = z−x. Clearly, x = 0
minimizes the value of sobj1 but not at all the value of sobj2 and x = 10 minimizes the
value of sobj2 but not the value of sobj1. If we try all values for x then we will discover
that x = 0 minimizes the value of sobj1 + sobj2 which is equal to y + z whereas any
other value v will lead to y + z + v. Thus, by applying a stronger form of consistency
we deduce that obj is greater than or equal to 10.

The main idea of this paper is to count for each problem variable involved in a con-
straint involving a sub-objective variable a lower bound of its contribution to the final
objective. We can easily figure out how we can use the result obtained from one problem
variable but it is unclear to see how the values obtained for all the problem variables can
be sum up. In this paper, we propose a generic answer to this question, inspired from
the PFC-MRDAC algorithm [2]: we select a problem variable x and compute a lower
bound of the sum of the sub-objective variables involved in a constraint with x. Then
we remove these sub-objective variables and we repeat the process for another variable.
At the end we can sum up the different lower bounds of the subsums because there are
disjoint, and we obtain a lower bound for the objective variable.

The paper is organized as follows. First, we propose a new lower bound of the ob-
jective variable. Then, we introduce a new filtering algorithm. At last, we give some
related work and we conclude.

2 Objective Sum Constraint

Definition 1. Given
• obj an objective variable
• SO = {sobj1, ..., sobjp} a set of sub-objective variables,
• PX = {x1, ..., xq} a set of problem variables disjoint from SO,
• CSO be a set of constraints, each of them involving at least one sub-objective

variable.
The objective-sum constraint is equivalent to the constraint network defined by the
variables (obj ∪ SO ∪ PX) and the constraints CSO and the objective constraint

obj =
∑

sobji∈SO

sobji

We will consider that we are provided with minsobj((x, a), sobji, C), a function re-
turning the minimum value of sobji compatible with (x, a) on the constraint C. It re-
turns the minimum value of sobji consistent with C if x is not involved in C. This
function can be implemented using the filtering algorithm of C and it does not have to
be exact (a lower bound can be used).

192 J.-C. Régin and T. Petit

3 Lower Bounds

3.1 Multiple Constraints Involving a Sub-objective Variable

Consider a variable x involved in several constraints with the same sub-objective vari-
able sobji and a value a of D(x). A lower bound of sobji from the point of view of the
variable x is the maximum value of minsobj((x, a), sobji, C) among all constraints
involving sobji:

Property 1. We define
• CSO(sobj), the set of constraints involving sobj.
• xsobji(x, a) = maxC∈CSO(sobji)(minsobj((x, a), sobji, C))
• xsobji(x) = mina∈D(x)(xsobji(x, a))

Then, sobji ≥ xsobji(x)

If we denote by minseparate(sobji) the minimum value of sobji consistent with each
constraint of CSO(sobji) taken separately then we have:

Property 2. xsobji(x) ≥ minseparate(sobji)

3.2 Multiple Sub-objective Constraints Involving a Variable

The computation of the minimum value of the objective variable is usually made by
independent computations of the minimum value of all the sub-objective variables. We
propose here to take into account simultaneously some other constraints, that is, estab-
lishing a stronger form of consistency.

Consider a variable x involved in a constraint C1 involving the sub-objective variable
sobji and in a constraint C2 involving the sub-objective variable sobjj . Considering the
constraints separately means that the value of x consistent with the minimum value
of sobji on C1 may be different than the one consistent with sobjj on C2. So, for
the sum sobji + sobjj , we can compute a lower bound of the minimum value of this
sum by considering different values of x, which is clearly an underestimation because
in any solution the value of x will be the same. Instead, for each value a of x, we
propose to compute a lower bound of sobji + sobjj . There is a value (x, a) for which
l = sobji + sobjj is minimum among all the values in the domain of x. Then, l is a
new lower bound of sobji + sobjj . Note that this value can never be less than the one
computed for each sub-objective variable separately. Hence, we have:

Property 3. Let S ⊆ SO be a set of sub-objective variables. We define:
• L(S, (x, a)) =

∑
sobji∈S

xsobji(x, a)

• sumobj(x, S) = mina∈D(x)(L(S(x, a))) Then,

∑
sobji∈S

sobji ≥ sumobj(x, S)

The Objective Sum Constraint 193

Property 4. If S is equal to all the sub-objective variables involved in a constraint with
x we have:

sumobj(x, S) ≥
∑

sobji∈S

minseparate(sobji)

It is not relevant to consider sub-objective variables sobji such that there is no constraint
in CSO(sobji) involving x. Next section shows how SO can be partitioned so as to sum
up efficiently several lower-bounds computed thanks to Property 3, in order to obtain a
lower-bound of obj.

3.3 A New Lower Bound of the Objective Variable

Property 3 shows how we can improve the computation of some sums of sub-objective
variables. We will obtain a new lower bound of the objective if the addition of that
sub-sums is equal to the whole sum at the end. That is, if no sub-objective variable is
added twice. By partionning the set of sub-objective variables SO we avoid counting
twice the same variable. In addition we can apply for each part Property 3. Therefore,
we have the following proposition:

Proposition 1. Let SO be the set of sub-objective variables, andP(SO) = {S1, ..., Sk}
a partition of SO, and {x1, ..., xk} a set of variables. Then,

obj =
∑

sobji∈SO

sobji ≥
∑

Si∈P(SO)

sumobj(xi, Si)

The main issue is to determine how the partition is defined and which variable is associ-
ated with each set. In fact, these questions are strongly related. We can imagine several
techniques for computing this partition. For instance, here is a possible algorithm:

1. For each x ∈ PX define sobjvar(x), the set of sub-objective variables which are
involved in a constraint involving x

2. Define O equal to SO and lobj equals to 0
3. Select the variable x having the largest sobjvar(x) ∩ O cardinality.
4. Compute sumobj(x, sobjvar(x) ∩ O) and add the result to lobj
5. Remove sobjvar(x) from O
6. Repeat from step 3) until there is no more variable in O

At the end of this algorithm lobj is a new lower bound of obj.

4 Filtering Algorithm

From the lower bound presented in Section 3 we can design a filtering algorithm whose
goal is to reduce the domain of some problem variables and not only the domains of the
objective or sub-objective variables. We will consider two types of problem variables:
those that are associated with a part of P(SO) and those that are not.

Consider a variable x and S be the part of P(SO) associated with it. If x is assigned
to b �= a then the lower bound is increased by L(S, (x, b)) − sumobj(x, S). If this
increment is too much for the objective variable (i.e. the lower bound is greater than
obj) then the value (x, b) is not consistent with the constraint. Thus we have:

194 J.-C. Régin and T. Petit

Property 5. For any value b of x we define:
• slack((x, b), S) = L(S, (x, b)) − sumobj(x, S)
• K = obj − [

∑
Si∈P(SO) sumobj(xi, Si)]

Then, each value (x, b) such that slack((x, b), S) > K is not consistent with the
objective constraint.

Once the new lower bound has been computed this filtering algorithm does not cost
anything more because all the sums

∑
sobji∈S xsobji(x, b) have been computed for all

the values of x.
With respect to variables which are not associated with a part, we can either ignore

them (or compute a new partition and apply the filtering algorithm).

5 Application

The objective sum constraint arises frequently in problem with multi-objectives. For
instance, it occurs in multidimensional bin packing problems (in which an item has
several dimensions), like the one appearing in the cloud computing management. In
these problems, we need to fill in servers (bins) with virtual machine (items) while
respecting all the sums of the capacities, one for each dimension. In the same time, we
associate with each dimension and with each server a cost representing the assignment
of the virtual machine to the server. For instance, a dimension may be the disk access
time and the cost represents a penalty depending of the time access given by the server.
The objective is to minimize the sum of all the penalties and penalties may be involved
in several side constraints.

6 Related Work

The idea of the partition comes from PFC-MRDAC, an algorithm for solving over-
constrained problems. The original version of the algorithm dealing only with binary
constraints is given in [2]. A simpler presentation, not restricted to binary constraints,
is given in [5]. Our generic technique is an alternative to some dedicated algorithms
for propagating sum constraints, which are specific to particular classes of optimization
problems (e.g., see [1] for constraint-based scheduling).

7 Conclusion

This paper presented a preliminary work about a new filtering algorithm for the objec-
tive sum constraint, which is useful in the resolution of multi-objective problems.

References

1. Kovács, A., Beck, J.C.: A global constraint for total weighted completion time for cumulative
resources. Constraints (2010) (in print)

2. Larrosa, J., Meseguer, P., Schiex, T., Verfaillie, G.: Reversible DAC and other improvements
for solving Max-CSP. Proceedings AAAI, pp. 347–352 (1998)

The Objective Sum Constraint 195

3. Larsson, T., Patriksson, M.: On side constrained models of traffic equilibria. In: Proc. of
the 19th Course of the International School of Mathematics, pp. 169–178. Plenum Press,
New York (1995)

4. Petit, T., Poder, E.: Global propagation of side constraints for solving over-constrained prob-
lems. Annals of Operations Research 184, 295–315 (2011)

5. Régin, J.-C., Petit, T., Bessière, C., Puget, J.-F.: An original constraint based approach
for solving over constrained problems. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894,
pp. 543–548. Springer, Heidelberg (2000)

Almost Square Packing

Helmut Simonis and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.simonis,b.osullivan}@4c.ucc.ie

Abstract. The almost square rectangle packing problem involves pack-
ing all rectangles with sizes 1× 2 to n× (n + 1) (almost squares) into an
enclosing rectangle of minimal area. This extends the previously studied
square packing problem by adding an additional degree of freedom for
each rectangle, deciding in which orientation the item should be packed.
We show how to extend the model and search strategy that worked well
for square packing to solve the new problem. Some adapted versions of
known redundant constraints improve overall search times. Based on a
visualization of the search tree, we derive a decomposition method that
initially only looks at the subproblem given by one of the cumulative
constraints. This decomposition leads to further modest improvements
in execution times. We find a solution for problem size 26 for the first
time and dramatically improve best known times for finding solutions
for smaller problem sizes by up to three orders of magnitude.

1 Introduction

The almost square rectangle packing problem [9, 12, 13] involves packing all
rectangles with sizes 1× 2 to n× (n+1) into an enclosing rectangle of minimum
area. The orientation of the rectangles can be freely chosen, adding an additional
degree of freedom compared to the previously studied square packing problem [8,
10, 11, 15, 18]. General rectangle packing is an important problem in a variety
of real-world settings. For example, in electronic design automation the packing
of blocks into a circuit layout is essentially a rectangle packing problem [14, 16].
Rectangle packing problems are also motivated by applications in scheduling
[10, 11, 15]. Rectangle packing is an important application domain for constraint
programming, with significant research into improved constraint propagation
methods reported in the literature [1–7, 19].

2 Constraint Programming Model

We initially use the established constraint model [2, 6, 18] for the rectangle pack-
ing problem. Each item to be placed is defined by domain variables X and Y for
the origin in the x and y dimension respectively, and two domain variables W
and H for the width and the height of the rectangle, respectively. In the partic-
ular case of packing almost squares, W and H can take only two possible values

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 196–209, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Almost Square Packing 197

disjoint2

cumulative

cumulative

X,Y

W

H

Width

Height

Fig. 1. The basic constraint programming model

(n and n + 1), and must be different from each other. The constraints are ex-
pressed by a non-overlapping constraint in two dimensions and two (redundant)
Cumulative constraints that work on the projection of the packing problem in
the x and y direction. This is illustrated by Figure 1. We use SICStus Prolog
4.0.4 (on a 3GHz Intel Xeon 5450 with 3.25GB of memory), which provides both
Cumulative [1] and Disjoint2 [3] constraints.

2.1 Generating Candidate Enclosing Rectangles

To find the enclosing rectangle of smallest area, we need a decomposition strategy
that generates sub-problems with fixed enclosing rectangle sizes. We enumerate
on demand all pairs Width, Height in order of increasing area Width × Height
that satisfy

[Width, Height] :: n..∞, Width ≥ Height

n∑
i=1

i × (i + 1) ≤ Width ∗ Height

k =
⌊
Height+ 1

2

⌋
, Width ≥

n∑
j=k

j (1)

Equation 1 provides a simple bound on the required area, considering all
large items that cannot be stacked on top of each other, which, thus, must
fit horizontally. For candidates with the same area, we try them by increasing
Height, i.e. for two subproblems with the same surface we try the “less square-
like” solution first. We then solve the rectangle packing problem for each such
candidate enclosing rectangle in turn, until we find the first feasible solution.
By construction, this is an optimal solution. The number of candidates seems
to grow linearly with the amount of slack (empty space) allowed. In comparison

198 H. Simonis and B. O’Sullivan

with the square packing problem, we find that the optimal solution in many
cases does not use any slack at all, and the number of candidates to be tested
remains quite small.

2.2 Symmetry Removal

The model so far contains a number of symmetries, which we need to remove
as we may have to explore the complete search space. We restrict the domain of
the largest square of size n × (n + 1) to be placed in an enclosing rectangle of
size Width × Height to

X :: 1..1 +
⌊

Width − n

2

⌋
, Y :: 1..1 +

⌊
Height− n

2

⌋
.

Other symmetries are discussed below, but are not yet handled as part of the
constraint model.

3 Search

We studied a number of different search strategies for square packing in [18].
The best method found used an interval labeling approach, first assigning the X
variables to intervals, small enough to create obligatory parts, then fixing the X
variables to values, and then repeating the process for the Y variables. For the
problem sizes studied (up to 27) this provided the best solutions, when fixing
the interval size to a fraction between 0.2 and 0.3 of the square width.

In the almost square packing problem, we have to assign W and H variables
in addition to the X and Y variables. As the W and H variables of one rectangle
are linked by a disequality, and can only take two possible values, it is enough
to assign W , this will force the assignment of the H variable.

When should we assign the W variables in the search process? We have studied
three cases:

eager. Assign all W variables before assigning any X variables, leading to mul-
tiple problems with oriented rectangles;

lazy. Assign the W variables once all X variables have been assigned to inter-
vals, but before assigning fixed values for X ;

mixed. For each rectangle, ordered by decreasing size, first assign the W vari-
able, then fix the X variable to an interval. Repeat this process for all rect-
angles, before assigning the X variables to values.

Not surprisingly, the mixed method clearly outperforms the two other methods.
In Figures 2, 3, and 4 we show the node distribution of the search for the first
solution, considering problem size 17. The display shows the number of TRY
and FAIL nodes at each level of the search tree. A TRY node is generated, when
we try to assign an interval or value to a variable and the resulting propagation
succeeds. A FAIL node is generated when the assignment leads to a failure and
backtracking. The displays are generated with CP-Viz [17], a generic visualiza-
tion tool for finite domain constraint solvers.

Almost Square Packing 199

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

FAIL
TRY

Fig. 2. Eager Orientation (N=17)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

FAIL
TRY

Fig. 3. Lazy Orientation (N=17)

For the eager method (Figure 2) we see that failures only start once we begin to
assign the X variables to intervals. The initial fixing of the rectangle orientation
leads to an exponential growth of the search tree (straight line on the left side of
the graph due to the log-scale), peaking at over a million nodes at level 23. Note
that after the assignment of the X variables only 20 possible solutions remain.
Starting with the assignment of the Y variables, the search tree expands again,
but only to a few hundred nodes.

200 H. Simonis and B. O’Sullivan

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

FAIL
TRY

Fig. 4. Interleaved Orientation (N=17)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80

N
od

es

Depth

Eager
Lazy

Interleaved

Fig. 5. Assignment Strategies Compared (N=17)

For the lazy method (Figure 3), the overall structure of the graph is similar,
although the maximal width of the search tree (again, over a million nodes) is
reached earlier, at the end of the X variable interval assignment. Forcing the
orientation of the rectangles then leads to a rapid elimination of candidate so-
lutions. Although failures occur earlier in the search, the propagation is not

Almost Square Packing 201

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

N
od

es

Depth

20_35_88

W and X Interval X Assignment Y Interval Y AssignmentFAIL
TRY

Fig. 6. Node Distribution (N=20)

powerful enough to eliminate unfeasible candidates without knowing the orien-
tation of the rectangles.

In the mixed method (Figure 4), the propagation can eliminate more partial
assignments early in the search, so that the maximal width of the tree is around
20000 nodes. Figure 5 compares the three methods considering only the TRY
nodes. We see that the search for the last X variable assignments and for finding
the Y variables is quite similar, but that the mixed method clearly outperforms
the two other methods early in the search.

The overall structure of the search tree is remarkably similar for most problem
sizes: Figure 6 shows the node distribution for problem size 20. An exception is
problem size 21, shown in Figure 7. This shows the node distribution for the 46×
77 candidate rectangle with no slack. Even after the orientation and X interval
assignment of all rectangles a large number of partial assignments remains, which
are only reduced by the assignment of the X variables to particular values. But
there is no solution to this problem, therefore all possible assignments must be
enumerated.

The optimal solution for size 26 is shown in Figure 8. This result has not been
previously published. Previous work only obtained solutions for problem sizes
up to 25 [12].

The results for the basic model are shown in Table 1. It shows the problem
size N , the total Surface of the rectangles to be placed, the number of candidate
enclosing rectangles studied (K), the Width and Height of the optimal enclosing
rectangle, its Area and the amount of lost space (Lost). It then counts the
number of backtracking steps and the time required to find the first solution,
the total number of solutions for the given enclosing rectangle, and the number
of backtracking steps and time required to enumerate all such solutions. Note

202 H. Simonis and B. O’Sullivan

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70

N
od

es

Depth

21_46_77

"flat_21_46_77.dat"

Fig. 7. Infeasible Problem Instance (N=21)

2
7
x
2
6

2
5
x
2
6

2
4
x
2
5

2
3
x
2
4

2
3
x
2
2

2
2
x
2
1

2
0
x
2
1

1
9
x
2
0

1
9
x
1
8

1
8
x
1
7

1
7
x
1
6

1
5
x
1
6

1
5
x
1
4

1
4
x
1
3

1
2
x
1
3

1
1
x
1
2

1
0
x
1
1

1
0
x
9

9
x
8

7
x
8 6
x
7

5
x
6

4
x
5

3
x
4 2
x
3

2
x
1

Fig. 8. Optimal Solution Size 26; The X axis is along the shorter side

that the total number of all optimal solutions can be higher, as there can be
candidate rectangles with the same optimal area which are not explored by our
algorithm, which stops at the first feasible candidate.

The total number of solutions varies widely with the problem size. For the
problem sizes (6, 9, 10, 12, 21) where the optimal solution is not perfect (i.e.
requiring some slack), the number of solutions increases as the 1×2 rectangle
can be placed in many of the empty spaces.

In general, if a solution contains two (consecutive) rectangles which share a
common edge, then we can exchange these rectangles creating a new solution.
In Figure 8 for example, the rectangles 22× 21 and 20× 21 (on the left) can be
exchanged. Indeed, in Figure 8 there are 5 such pairs of rectangles, which can
be flipped independently, leading to 32 symmetrical solutions.

Almost Square Packing 203

3.1 Redundant Constraints

We have previously described [18] two methods which were quite effective in
reducing problem complexity:

– The first was to ignore the 1×1 square when setting up the constraints, while
still reserving space for it in the enclosing rectangle. This both reduced the
amount of unnecessary work inside the constraints dealing with this small
square, and avoided symmetries in the search when the 1 × 1 square was
placed in all possible empty places.

– The second idea was to eliminate certain X and Y values, when squares were
placed close to the border of the enclosing space. If a large object is placed
near a border, then it might be impossible to fill the gap between the border
and the object with the few available, smaller items and the slack allowed
(empty space). These gap limits can be precomputed and domain values can
be removed a priori, reducing the search space.

For the almost square packing problem, the smallest item is the 1× 2 rectangle.
If we remove it from the problem, we might find an infeasible solution, if an
assignment exists where all empty space is allocated to non-connected 1 × 1

Table 1. Basic Model Results

First Solution All Solutions
N Surface K Width Height Area Loss Back Time Sols Back Time

4 40 1 4 10 40 0.00 2 00:00 8 6 00:00

5 70 1 5 14 70 0.00 4 00:00 16 14 00:00

6 112 3 6 19 114 1.79 16 00:00 216 24 00:00

7 168 3 12 14 168 0.00 19 00:00 65 76 00:00

8 240 4 15 16 240 0.00 6 00:00 12 83 00:00

9 330 6 14 24 336 1.82 54 00:00 9170 3137 00:00

10 440 6 17 26 442 0.45 323 00:00 1854 1379 00:00

11 572 3 22 26 572 0.00 99 00:00 4 268 00:00

12 728 8 21 35 735 0.96 546 00:00 25180 13795 00:02

13 910 3 26 35 910 0.00 1900 00:00 42 6197 00:00

14 1120 4 28 40 1120 0.00 2937 00:00 4 9604 00:00

15 1360 4 34 40 1360 0.00 14440 00:00 4 50592 00:03

16 1632 4 32 51 1632 0.00 15967 00:01 544 48711 00:03

17 1938 3 34 57 1938 0.00 210878 00:14 16 398759 00:27

18 2280 4 30 76 2280 0.00 9734 00:00 110288 152032 00:24

19 2660 4 35 76 2660 0.00 102235 00:08 526 3240741 04:26

20 3080 4 35 88 3080 0.00 351659 00:34 1988 3612859 05:52

21 3542 5 39 91 3549 0.20 14036353 21:38 3250117 720146935 25:13:20

22 4048 3 44 92 4048 0.00 58206362 01:37:30 688 122563947 03:23:19

23 4600 3 40 115 4600 0.00 14490682 30:12 6784 136039535 04:38:40

24 5200 3 40 130 5200 0.00 27475258 55:05 96 99731414 03:20:37

25 5850 5 45 130 5850 0.00 35282646 01:23:12 1007780

26 6552 5 42 156 6552 0.00 92228265 03:28:20 1056

204 H. Simonis and B. O’Sullivan

16x17 16x15

15x14

14x13

13x12

12x11

10x11

10x9 8x9

7x8

7x6

6x5

4x5

4x32x3

Fig. 9. Pseudo Solution N=16 Width=32 Height=51 with 1 × 2 item removed; This
can not be extended to a complete solution

pieces. Fortunately, that situation rarely occurs; Figure 9 shows a case for size
16. We correct this by enforcing an additional non-overlapping constraint at the
end of the search, where we add the 1 × 2 piece back to the problem. If there
is no room to place that item, the constraint will fail and we backtrack to find
another candidate for the relaxed problem, until a valid solution is generated.

The precomputation of infeasible gap values can also be done for the almost
square case, although the domain restrictions are somewhat weaker.

The effect of the redundant constraints are shown in Table 2. Ignoring the
1× 2 rectangle leads to a small, but consistent improvement (Not One Column)
compared to the Basic Model. Removing values close to the border of the place-
ment area (Gap Column) has a more significant effect, while combining both
leads to the best results.

3.2 Impact of Interval Size

In [18], we also studied the impact of the chosen interval size on the performance
of the algorithm. We repeated these tests for the almost square packing problem,
which lead to a similar conclusion. Setting the interval to 0.3 times the size of the
item leads to the best performance, both in number of search nodes and execution
time. As Figure 10 shows, the effect is rather restricted, with an obvious effect
visible only for problem size 21, which is the only large instance which requires
some slack.

Almost Square Packing 205

Table 2. Redundant Constraint Model Results

Basic Model Not One Gap Both
N Back Time Back Time Back Time Back Time

4 2 00:00 2 00:00 2 00:00 2 00:00

5 4 00:00 3 00:00 2 00:00 1 00:00

6 16 00:00 16 00:00 6 00:00 6 00:00

7 19 00:00 18 00:00 10 00:00 9 00:00

8 6 00:00 5 00:00 17 00:00 10 00:00

9 54 00:00 54 00:00 27 00:00 27 00:00

10 323 00:00 323 00:00 159 00:00 159 00:00

11 99 00:00 99 00:00 54 00:00 54 00:00

12 546 00:00 546 00:00 274 00:00 274 00:00

13 1900 00:00 1900 00:00 1040 00:00 1040 00:00

14 2937 00:00 2936 00:00 1505 00:00 1501 00:00

15 14440 00:00 14425 00:00 7632 00:00 7617 00:00

16 15967 00:01 9338 00:00 7264 00:00 3989 00:00

17 210878 00:14 210850 00:13 107639 00:07 107611 00:07

18 9734 00:00 9734 00:00 5550 00:00 5550 00:00

19 102235 00:08 102235 00:08 13694 00:01 13690 00:01

20 351659 00:34 355964 00:33 157312 00:14 161410 00:14

21 14036353 21:38 10859861 16:01 9499957 14:14 6524396 09:13

22 58206362 01:37:30 58214183 01:33:03 17312971 24:37 17319946 23:54

23 14490682 30:12 14490682 29:16 6400629 11:01 6400629 10:33

24 27475258 55:05 27475258 53:11 9801577 16:39 9801577 16:10

25 35282646 01:23:12 35502799 01:21:25 13030167 25:16 13232221 25:15

26 92228265 03:28:20 92228259 03:22:33 29432477 55:38 29432467 54:08

Fig. 10. Impact of Interval Size

206 H. Simonis and B. O’Sullivan

4 Decomposition

We saw in Figure 4 that only rather few complete assignments of the X variables
have to be tested to find an optimal solution for the problem. This suggests a
further decomposition where we solve the first part of the problem, the orienta-
tion of the rectangles and the assignment of the X variables, without considering
the Y variables at all. For this we only need the cumulative constraint for the X
variables, the second cumulative and the non-overlapping constraints are stated
only once the first subproblem has been solved, before we start the assignment
of the Y variables. This will avoid waking these constraints repeatedly as the
X variables are assigned. Given the number of nodes in the search tree, this
can lead to significant savings. At the same time, we may loose important prop-
agation due to these constraints, and therefore increase the size of the search
tree of the subproblem. Experiments shows that this is not the case. Table 3
compares backtracking steps and execution times for the basic model without
and with the redundant constraints and the decomposed model, also without
and with the redundant constraints. The number of backtracks is the same for
all problem instances except 10 and 12. This is a clear indication that the non-
overlapping constraint and the second cumulative are not contributing anything
to the search in the initial phase. The difference in execution times are solely
due to avoiding unnecessary calls to these constraints in the first phase of the
search. The savings are limited, but still worthwhile. In the last two columns (De-
composed Reified) we show results for a model where we replace the disjoint2
constraint of SICStus with reified sets of inequalities for each pair of rectangles.

Table 3. Decomposed Model Results

Without Redundant Constraints With Redundant Constraints
Basic Model Decomposed Model Basic Model Decomposed Model Decomposed Reified

N Back Time Back Time Back Time Back Time Back Time
4 2 00:00 2 00:00 2 00:00 2 00:00 2 00:00
5 4 00:00 4 00:00 1 00:00 1 00:00 1 00:00
6 16 00:00 16 00:00 6 00:00 6 00:00 6 00:00
7 19 00:00 19 00:00 9 00:00 9 00:00 9 00:00
8 6 00:00 6 00:00 10 00:00 10 00:00 10 00:00
9 54 00:00 54 00:00 27 00:00 27 00:00 27 00:00

10 323 00:00 323 00:00 159 00:00 176 00:00 176 00:00
11 99 00:00 99 00:00 54 00:00 54 00:00 54 00:00
12 546 00:00 546 00:00 274 00:00 301 00:00 301 00:00
13 1900 00:00 1900 00:00 1040 00:00 1040 00:00 1040 00:00
14 2937 00:00 2937 00:00 1501 00:00 1501 00:00 1501 00:00
15 14440 00:00 14440 00:00 7617 00:00 7617 00:00 7617 00:00
16 15967 00:01 15967 00:00 3989 00:00 3989 00:00 3989 00:00
17 210878 00:14 210878 00:11 107611 00:07 107611 00:05 107611 00:06
18 9734 00:00 9734 00:00 5550 00:00 5550 00:00 5550 00:00
19 102235 00:08 102235 00:06 13690 00:01 13690 00:00 13690 00:00
20 351659 00:34 351659 00:28 161410 00:14 161410 00:11 161410 00:16
21 14036353 21:38 14036353 18:26 6524396 09:13 6524396 07:10 6524396 08:05
22 58206362 01:37:30 58206362 01:21:36 17319946 23:54 17319946 19:13 17319946 21:50
23 14490682 30:12 14490682 24:45 6400629 10:33 6400629 08:04 6400629 08:58
24 27475258 55:05 27475258 44:23 9801577 16:10 9801577 12:11 9801577 13:07
25 35282646 01:23:12 35282646 01:10:17 13232221 25:15 13232221 20:07 13232773 23:34
26 92228265 03:28:20 92228265 02:51:27 29432467 54:08 29432467 40:26 29432467 43:51

Almost Square Packing 207

Table 4. Comparison with [12]

Korf, Moffitt and Pollack Pure Redundant Decomposition
Size Area Nodes Times Back Times Back Times Back Times

17 34×57 6,889,973 :07 210878 00:14 107611 00:07 107611 00:05
18 30×76 22,393,428 :26 9734 00:00 5550 00:00 5550 00:00
19 35×76 11,918,834 :11 102235 00:08 13690 00:01 13690 00:00
20 35×88 608,635,198 12:50 351659 00:34 161410 00:14 161410 00:11
21 39×91 792,197,287 23:21 14036353 21:38 6524396 09:13 6524396 07:10
22 44×92 4,544,585,807 1:49:32 58206362 01:37:30 17319946 23:54 17319946 19:13
23 40×115 32,222,677,089 15:06:56 14490682 30:12 6400629 10:33 6400629 08:04
24 40×130 41,976,042,836 18:39:34 27475258 55:05 9801577 16:10 9801577 12:11
25 45×130 557,540,262,189 12:11:30:32 35282646 01:23:12 13232221 25:15 13232221 20:07
26 42×156 - - 92228265 03:28:20 29432467 54:08 29432467 40:26

This is a much weaker form of the non-overlapping constraint, but the results for
the decomposed model are quite similar. Clearly, the non-overlapping constraint
affects the performance only in a minor way.

Do we need the non-overlapping constraint at all? In [1] perfect placement
problems were solved by creating all solutions for the cumulative projections
in the x and y directions, and then combining them with a checker for the
non-overlapping constraint. This will not be competitive for the almost square
packing problem. We have seen above (Table 1) that some problem instances
have millions of solutions. There will be a similar number of solutions for solving
the x cumulative alone. Testing each of those solutions against all solutions of
the y cumulative will be too expensive.

We can try to push the non-overlapping constraint to the overall end of the
search, and use it only as a checker. This will mean that in the second part of the
search we only use a single cumulative constraint in the y direction. Experiments
indicate that this is not a competitive approach.

5 Comparison

In Table 4, we compare our results to those reported in [12]. Note that we only
count backtracking steps, not the total number of nodes as in [12]. We can see
that even our basic model dramatically outperforms Korf et al. for large problem
sizes, and the difference increases when our further improvements are taken into
account. But the differences are not uniform with the problem size, e.g. the
differences for instances 21 and 22 are much smaller.

6 Conclusion

In this paper we have extended our previous results [18] for packing squares
into the smallest enclosing rectangle to packing “almost squares”, rectangles of
sizes n× (n+1). For problem size N , this adds 2N additional choices. Using the
existing constraint model and carefully interleaving the assignment of X intervals
and the orientation of the rectangles, we can solve the problem to optimality
up to size 26, extending the previously best results [12] by one instance and

208 H. Simonis and B. O’Sullivan

obtaining a large reduction in execution time. For this problem type, a further
decomposition of the problem into two phases is suggested by a visualization of
the search tree. We first solve the problem in x direction with a single cumulative
constraint, interleaving the orientation of the rectangles with the assignment of
intervals to the X variables, before fixing the X values. Only then do we state
the second cumulative constraint and the non-overlapping constraint. Together
with some redundant constraints, this leads to a further reduction of the search
space required.

Acknowledgment

The work reported here was supported by Science Foundation Ireland (Grant
Number 05/IN/I886). The authors wish to thank Mats Carlsson, who provided
the SICStus Prolog 4.0.4 used for the experiments.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
problems. Journal of Mathematical and Computer Modelling 17(7), 57–73 (1993)

2. Beldiceanu, N., Bourreau, E., Simonis, H.: A note on perfect square placement,
Prob009 in CSPLIB (1999)

3. Beldiceanu, N., Carlsson, M.: Sweep as a generic pruning technique applied to the
non-overlapping rectangles constraint. In: Walsh [20], pp. 377–391.

4. Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative constraint
in the context of non-overlapping. In: CP-AI-OR 2008, Paris (May 2008)

5. Beldiceanu, N., Carlsson, M., Poder, E., Sadek, R., Truchet, C.: A generic geomet-
rical constraint kernel in space and time for handling polymorphic k-dimensional
objects. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 180–194. Springer,
Heidelberg (2007)

6. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Journal of
Mathematical and Computer Modelling 20(12), 97–123 (1994)

7. Beldiceanu, N., Guo, Q., Thiel, S.: Non-overlapping constraints between convex
polytopes. In: Walsh [20], pp. 392–407

8. Huang, E., Korf, R.E.: New improvements in optimal rectangle packing. In:
Boutilier, C. (ed.) IJCAI, pp. 511–516 (2009)

9. Huang, E., Korf, R.E.: Optimal rectangle packing on non-square benchmarks. In:
Fox, M., Poole, D. (eds.) AAAI. AAAI Press, Menlo Park (2010)

10. Korf, R.E.: Optimal rectangle packing: Initial results. In: Giunchiglia, E., Muscet-
tola, N., Nau, D.S. (eds.) ICAPS, pp. 287–295. AAAI, Menlo Park (2003)

11. Korf, R.E.: Optimal rectangle packing: New results. In: Zilberstein, S., Koehler,
J., Koenig, S. (eds.) ICAPS, pp. 142–149. AAAI, Menlo Park (2004)

12. Korf, R., Moffitt, M., Pollack, M.: Optimal rectangle packing. Annals of Operations
Research 179, 261–295 (2010), 10.1007/s10479-008-0463-6

13. MacHale, D.: The almost square problem. Personal Communication (2008)

14. Moffitt, M.D., Ng, A.N., Markov, I.L., Pollack, M.E.: Constraint-driven floorplan
repair. In: Sentovich, E. (ed.) DAC, pp. 1103–1108. ACM, New York (2006)

Almost Square Packing 209

15. Moffitt, M.D., Pollack, M.E.: Optimal rectangle packing: A meta-CSP approach.
In: Long, D., Smith, S.F., Borrajo, D., McCluskey, L. (eds.) ICAPS, pp. 93–102.
AAAI, Menlo Park (2006)

16. Roy, J.A., Markov, I.L.: Eco-system: Embracing the change in placement. In: ASP-
DAC, pp. 147–152. IEEE, Los Alamitos (2007)

17. Simonis, H., Davern, P., Feldman, J., Mehta, D., Quesada, L., Carlsson, M.:
A generic visualization platform for CP. In: Cohen, D. (ed.) CP 2010. LNCS,
vol. 6308, pp. 460–474. Springer, Heidelberg (2010)

18. Simonis, H., O’Sullivan, B.: Search Strategies for Rectangle Packing. In: Stuckey,
P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008)

19. Van Hentenryck, P.: Scheduling and packing in the constraint language cc(FD). In:
Zweben, M., Fox, M. (eds.) Intelligent Scheduling. Morgan Kaufmann Publishers,
San Francisco (1994)

20. Walsh, T. (ed.): CP 2001. LNCS, vol. 2239. Springer, Heidelberg (2001)

Efficient Planning of Substation Automation

System Cables

Thanikesavan Sivanthi and Jan Poland

ABB Switzerland Ltd, Corporate Research,
Segelhofstrasse 1K, 5405, Baden-Dättwil, Aargau, Switzerland

Abstract. The manual selection and assignment of appropriate cables
to the interconnections between the devices of a substation automation
system is a major cost factor in substation automation system design.
This paper discusses about the modeling of the substation automation
system cable planning as an integer linear optimization problem to gen-
erate an efficient cable plan for substation automation systems.

1 Introduction

Cabling between different devices of a substation automation system (SAS) [1]
is a major cost factor in the SAS design process. Usually computer aided de-
sign software is used to create the design templates of SAS devices and their
interconnections. The design templates are then instantiated in a SAS project
and the cables are manually assigned to the connections. The selection and as-
signment of cables to connections must follow certain engineering rules. This
engineering process is usually time consuming and can cause engineering errors,
thereby increasing the engineering cost. Apparently, the SAS cable planning is
related to the well known bin packing problem. The SAS cable planning can be
formulated as an integer linear optimization problem with the cable engineering
rules expressed as a set of linear constraints and a cost objective for minimizing
the total cable cost. This paper describes the formulation of SAS cable planning
problem as an integer linear optimization problem and presents the results for
some representative test cases. To the best of the authors’ knowledge the work
is the first of the kind to study SAS cable planning.

The paper is organized as follows. Section 2 presents an overview of the SAS
cable planning process. Section 3 expresses the SAS cable planning problem
as an integer linear optimization problem. The results obtained by solving the
optimization problem using some solvers is presented in Section 4. Section 5
draws some conclusions of this work.

2 SAS Cable Planning

The SAS cable planning begins after the system design phase of a SAS project.
The SAS cable planning is at present done manually by computer aided design

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 210–214, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Efficient Planning of Substation Automation System Cables 211

Pin

1

1

2

3

3

2

1

2

1

2

Field 1

Field 3

Field 2

Device C

Device D

Connection

S1

S2

S4

S3

S5

Signal

Device A

Device B

Fig. 1. Fields, devices and their interconnections

(CAD) engineers. The different design templates corresponding to the actual
devices of a SAS are instantiated in one or more CAD jobs. Each job consists of
one or more sheets and each sheet has fields which are logical groups of devices as
shown in Figure 1. Moreover, a field corresponds to a physical assembly interface
class e.g. Metering box, Protection cubicle etc. Each device has pins which are
the physical interconnection interfaces of the device. A valid connection is a
unique path between exactly two pins and every connection carries a physical
signal. A signal can traverse over one or more connections. Each connection
is assigned to exactly one of the conductors of a cable. The type of cables to
which the connections are assigned is based on cable engineering rules. The
cable engineering rules can be classified into two types, namely the cable rules
and the signal rules. The cable rules specify the allowed cable types for a set
of connections. It can also specify the number of spare conductors which must
be left free in each instance of the allowed cable types. The signal rules specify
restrictions on allocation of connections which carry signals that should not
be allocated to the same cable or preferably allocated to the same cable. The
current practice is to manually select and assign cables to connections according
to the cable engineering rules. This procedure is time consuming and can cause
engineering errors thereby increasing the engineering cost. In what follows is the
formulation of the SAS system cable planning as an integer linear optimization
problem with which a more efficient cable plan for SAS can be generated.

3 Integer Linear Program Formulation

The SAS cable planning problem is divided into sub problems where each sub
problem considers connections between distinct set of field pairs within a given
set of CAD jobs. The rationale behind this decomposition is that the cable plan
should consider the physical assembly interface classes and should not mix con-
nections between two different source or destination physical assembly interface
classes in one cable. This is ensured by deriving a cable plan for each distinct
field pairs.

Let C = {1, 2, 3, . . . , N} represent the set of all connections between two field
pairs, where N is the total number of connections, and K = {1, 2, 3, . . . , M}

212 T. Sivanthi and J. Poland

represent the set of all cable types, where M is the total number of cable types
in a sub problem. In a cable instance, there can be one or more connections and
we refer to the connection with lowest index among all connections in the cable
instance as the leader and the other connections as the followers. This implies
that all connections except the first connection in C can either be a leader or
follower. Moreover, based on the signal rules a set of connection pairs X can be
derived where each (i, î) ∈ X represents the connections i and î that must not
be assigned to the same cable. Let C̄ be the set of connection pairs (i, î) where
i, î ∈ C, i > î, (i, î) /∈ X . We introduce the following binary variable Xi,̂i, where
(i, î) ∈ C̄, which when true implies that connection i is a follower of a leader î.

Xi,̂i = 0 or 1, where (i, î) ∈ C̄ . (1)

Similarly, based on the cable rules a set of connection cable pairs Y can be derived
where each (i, j) ∈ Y implies that cable type j is not allowed for connection i.
Let K̄ be the set of connection cable pairs (i, j), where i ∈ C, j ∈ K, (i, j) /∈ Y.
We introduce the following binary variable Yi,j , where (i, j) ∈ K̄, which when
true implies that the leader i is assigned to an instance of cable type j.

Yi,j = 0 or 1, where (i, j) ∈ K̄ . (2)

Table 1 illustrates all binary variables corresponding to the example shown in
Figure 1 for the case with two cable types K1 and K2. It is assumed that
connections C1 and C3 cannot be assigned to the same cable and K1 is not
an allowed cable type for connection C3. As mentioned before all connections
except the first connection, which must be a leader, can either be a leader or
follower. This is ensured by the following constraint.∑

(i,̂i)∈C̄

Xi,̂i +
∑
j∈K

(i,j)∈K̄

Yi,j = 1, ∀i ∈ C . (3)

A connection which is a leader in a cable cannot be a follower of a leader in
another cable. This is expressed by the following constraint.

Xi,̂i +
∑

(̂i,i∗)∈C̄

Xî,i∗ ≤ 1, ∀(i, î) ∈ C̄ . (4)

An implicit constraint of the cable planning problem is the capacity constraint
which implies that the number of connections assigned to a cable must be less

Table 1. Binary variables corresponding to Figure 1 example

C1 C2 C3 C4 C5 K1 K2

C1 - - - - - Y1,1 Y1,2

C2 X2,1 - - - - Y2,1 Y2,2

C3 - X3,2 - - - - Y3,2

C4 X4,1 X4,2 X4,3 - - Y4,1 Y4,2

C5 X5,1 X5,2 X5,3 X5,4 - Y5,1 Y5,2

Efficient Planning of Substation Automation System Cables 213

than the capacity requirement i.e. the total number of conductors in the cable
minus the spare core requirement of the cable. Let Uj and Sj be the total number
of conductors and the required spare core in cable type j, then the following
equation expresses the capacity constraint. In this equation, if the connection
î is a leader then the sum of all connections including the connection î and its
followers is less than the capacity requirement of the cable type j to which î is
assigned, otherwise the equation is by default satisfied.

1 +
∑

(i,̂i)∈C̄

Xi,̂i −
∑

(̂i,i∗)∈C̄

Xî,i∗ ≤
∑

(̂i,j)∈K̄

(Uj − Sj) · Yî,j , ∀î ∈ C . (5)

In addition the problem formulation needs the following constraint to avoid
indirect pairing of connections i and i∗ which have the same leader î but (i, i∗)
is in X .

Xi,̂i + Xi∗ ,̂i ≤ 1, ∀(i, î), (i∗, î) ∈ C̄ where i > i∗, (i, i∗) /∈ C̄ . (6)

Similarly, the following constraint prohibits a follower to choose a leader whose
selected cable type is not one of the allowed cable types of the follower.

Xi,̂i + Yî,j ≤ 1, ∀(i, î) ∈ C̄, j ∈ K where (̂i, j) ∈ K̄, (i, j) /∈ K̄ . (7)

Finally, the sub problem may include a set of preferred allocation rules which
specify that all connections carrying certain signals should preferably be assigned
to the same cable. This is achieved by introducing a penalty cost in the objective
function. The penalty cost will increase when not all connections of any preferred
allocation rule have the same leader or when there exists more than one leader
among the connections within any preferred allocation rule. The constraints
related to preferred allocation rules are not expressed due to space limitation.
The objective of the cable planning problem is then specified as

minimize:
∑

(i,j)∈K̄

Mj · Yi,j . (8)

where Mj is the cost of cable type j. The optimization of the above problem
results in a SAS cable plan with minimal total cable cost.

4 Results

In order to conduct a meaningful experiment, due to the lack of sufficient real
sub-problem instances, we generated random sub problem instances with nine
cable types. The number of connections N in each sub problem instance is varied
from 10 to 50. Each cable type has a cable cost which is discrete uniformly
distributed between 1 and 2 and has a total number of conductors which is
discrete uniformly distributed between 1 and 5. Each connection is allowed to
be assigned to M out of the nine cable types, where M is discrete uniformly
distributed between 3 and 6. Furthermore, the number of connection pairs which

214 T. Sivanthi and J. Poland

10 20 30 40 50

10
0

10
2

#Connections

m
ed

ia
n

co
m

pu
ta

tio
n

tim
e

[s
]

Cplex 11.2
Cplex 12.1
SCIP−SPX 2.0.1
SCIP−CLP 2.0.1
SCIP−CLP 1.2.0
CBC−CLP 2.6.2

10 20 30 40 50
10

0

10
1

10
2

#Connections

av
er

ag
e

tim
e

re
la

tiv
e

to
 C

pl
ex

 1
1.

2

SCIP−SPX 2.0.1
SCIP−CLP 2.0.1
SCIP−CLP 1.2.0
CBC−CLP 2.6.2

Fig. 2. Performance obtained with different solvers

cannot be assigned to the same cable is on average equal to (N · 2)/3. It should
be noted that the sub problem instances generated are harder than typical SAS
cable planning sub problems. The instances are solved using different solvers
and the results obtained are shown in Figure 2. The left plot shows the median
computation time to obtain the optimal solution with some non-commercial
solvers SCIP-SOPLEX [2] [3] [4], CBC [5] and commercial solver CPLEX [6].
The right plot shows the performance of the non-commercial solvers relative
to CPLEX. It is observed that SCIP-CLP 2.0.1 which is on average 3.6 times
slower than CPLEX scales well with increasing problem size unlike CBC-CLP
2.6.2 which scales poorly and is on average 13.9 times slower than CPLEX. The
salient result of our experiment is that even the harder than typical instances are
fairly easily solved, therefore the integer linear optimization formulation clearly
offers time and cost efficient solution for SAS cable planning.

5 Conclusion

This paper presented the modeling of substation automation system cable plan-
ning as an integer optimization problem to generate a more efficient cable plan
for substation automation systems. The results obtained for typical test cases
show that the integer linear optimization formulation clearly offers time and cost
efficient solution for the substation automation system cable planning.

References

1. Brand, K.-P., et al.: Substation Automation Handbook. Utility Automation Con-
sulting (2003)

2. Achterberg, T.: SCIP: Solving Constraint Integer Programs. J. Math. Prog.
Comp. 1(1), 1–41 (2009)

3. Achterberg, T.: Constraint Integer Programming, Technische Universität Berlin
(2007)

4. SCIP Mixed Integer Programming Solver, http://zibopt.zib.de
5. CLP Linear Programming Solver, https://projects.coin-or.org/Clp
6. CPLEX Optimizer, http://www-01.ibm.com/software/integration/optimization/

cplex-optimizer

A New Algorithm for Linear and Integer

Feasibility in Horn Constraints�

K. Subramani and James Worthington

LDCSEE,
West Virginia University,

Morgantown, WV
{ksmani,jworthing}@csee.wvu.edu

Abstract. In this paper, we detail a new algorithm for the problem of
checking linear and integer feasibility of a system of Horn constraints. For
certain special cases, the new algorithm is faster than the “Lifting Algo-
rithm” described in [1]. Moreover, the new approach is based on different
ideas and in fact exploits several properties of Horn constraint systems
(HCS) which are not known to be part of the literature. In the case of con-
straints of bounded width (corresponding to “loosely coupled” systems),

our algorithm can be modified to run in O(n3+m·n+ m·n2

log(max(m,n))
) time.

Our main result establishes that checking the feasibility of an HCS can
be reduced to three subproblems: negative-cost cycle detection in net-
works (NCCD), matrix-vector multiplication (MV), and the conversion
of an HCS to a non-redundant set of difference constraints (H2D). The
MV and NCCD problems have been extremely well-studied, and special-
ized, fast algorithms exist for relevant special cases. We have identified
a new problem, H2D, which warrants future research, since improved
algorithms for H2D could be implemented in our algorithm to decrease
the running time.

1 Introduction

In this paper, we introduce a new algorithm for the problem of checking the feasi-
bility of a conjunction of linear Horn constraints. This work builds upon our work
in [1], wherein the first combinatorial algorithm for this problem was proposed.
The algorithm we propose is based on substantially different ideas than those in
[1] and in fact exploits a number of properties of Horn constraint systems (HCS)
which are not known to be part of the literature. Essentially, we Turing-reduce
the Horn constraint feasibility problem to three problems: negative-cost cycle
detection (NCCD), matrix-vector multiplication (MV), and the conversion of a
system of Horn constraints to a non-redundant system of difference constraints
(H2D). The new algorithm may be either combinatorial or non-combinatorial,
depending on the algorithms chosen for NCCD, MV, and H2D. Furthermore,

� This research was supported in part by the National Science Foundation through
Award CCF-0827397.

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 215–229, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

216 K. Subramani and J. Worthington

the complexity of our algorithm is expressed in terms of the complexities of
the NCCD, MV, and H2D problems. Accordingly, an improvement in the run-
ning times of algorithms for these three problems leads to an improvement in
the running time of our algorithm. In the case of bounded-width constraints,
the algorithm can be modified to run in time O(n3 +m ·n+ m·n2

log(max(m,n))). To the
best of our knowledge, our algorithm is the fastest known in this case.

The main contributions of this paper are as follows:

(i) Design and analysis of a new algorithm for checking feasibility in Horn
constraint systems, and

(ii) Extending the analysis to handle the case of Extended Horn constraints.

The rest of this paper is organized as follows: Section 2 formally specifies the
problem under consideration. In Section 3, we discuss the motivation for our
work as well as related approaches in the literature. Section 4 describes a tech-
nique by which an HCS can be converted into a difference constraint system
(DCS), such that the infeasibility of the DCS guarantees the infeasibility of the
HCS. In Section 5, we prove a lemma essential for proving the correctness of
our algorithm. Section 6 presents the new algorithm for checking feasibility in
an HCS. Section 7 examines the complexity of our algorithm. The techniques
detailed in Section 6 are used in Section 8 to develop a new algorithm for a larger
class of constraints called Extended Horn constraints. We conclude in Section 9
by summarizing our contributions and outlining avenues for future research.

2 Statement of Problem

Let

A · �x ≥ �b (1)
�x ≥ �0

denote a polyhedral system in which A is an m × n integral matrix, �b is an
integral m-vector, and �x = [x1, x2, . . . xn]T is an rational n-vector.

Definition 1. A polyhedral system is said to be a Difference Constraint System
(DCS) if each row of A contains at most two non-zero entries with one of these
entries being 1 and the other being −1.

For instance, x1 − x2 ≥ 3 is a difference constraint.

Definition 2. A polyhedral system is said to be a Horn Constraint System
(HCS) or a Horn polyhedron if

(i) the entries of A belong to the set {0, 1,−1},
(ii) each row of A contains at most one positive entry.

The matrix A is said to satisfy the Horn structure.

For instance, x1−x5−x7 ≥ −3 is a Horn constraint. A Horn system could include
absolute constraints (also called unary constraints), i.e., constraints of the form

A New Algorithm for Linear and Integer Feasibility in Horn Constraints 217

x1 ≥ 5 or −x2 ≥ −6. Note that a constraint such as x1 ≥ 5 can be replaced by
the constraint x′

1 ≥ 0, where x′
1 = x1 − 5, and the resultant constraint system is

feasible if and only if the original system is. Moreover, constraints of the form
−x2 ≥ −6 can be ignored until after Algorithm 6.1 has executed; see Remark 1
below.

Definition 3. A Horn system is said to be standardized if every row and every
column of the defining matrix A has at least one positive entry and at least one
negative entry.

Assumption 1. In the sequel, all Horn constraint systems are standardized
(this assumption is justified in [1]).

Horn constraints subsume difference constraints syntactically. An important dis-
tinction between the two constraint systems can be observed in their respective
dual polyhedra. For instance, consider the linear program:

minimize
n∑

i=1

xi

A · �x ≥ �b (2)
�x ≥ �0.

Suppose �b = [1, 1, 1, 1]T. If System (2) is a DCS, it is well-known that it can be
represented by a constraint network G such that G has a simple, negative-cost
cycle if and only if the DCS is infeasible [2]. Moreover, if System (2) is feasible,
then the shortest path distances from a specified source comprise the optimal
solution. In either case, the dual variables are binary, i.e., 0 or 1 [3].

However, suppose in System (2) that the matrix A is as follows:
⎡
⎢⎢⎣
−1 1 0 0 0
−1 −1 1 0 0
−1 −1 −1 1 0
−1 −1 −1 −1 1

⎤
⎥⎥⎦ .

It can be verified that the optimal primal solution is �x = [0, 1, 2, 4, 8]T, and the
corresponding optimal (non-binary) dual solution is �y = [8, 4, 2, 1]T.

With respect to System (1), we are interested in the following two questions:

(i) Is System (1) feasible? Observe that System (1) represents a set, viz., the
set of points that satisfy the constraints defining System (1). This problem
is called the Linear Feasibility (LF) problem.

(ii) Does System (1) enclose a lattice point? This problem is called the Integer
Feasibility (IF) problem.

We make the following observations:

(i) For an HCS (DCS), the LF and IF problems coincide, as a consequence of
the Lifting Algorithm discussed in [1].

218 K. Subramani and J. Worthington

(ii) The non-negativity constraints are clearly not required for a DCS. In [1],
we showed that these constraints are not needed for an HCS either. In other
words, given a constraint system of the form A · �x ≥ �b, in which the matrix
A satisfies the Horn structure, we can derive a new constraint system
A′ · �x ≥ �b′, �x ≥ �0, with A′ satisfying the Horn structure. Therefore, we
can assume without loss of generality that the HCS we consider has explicit
non-negativity constraints.

As mentioned above, our algorithm may or may not be combinatorial, depend-
ing on how it is implemented. For the convenience of the reader, we recall the
following definitions.

Definition 4. An algorithm is said to run in strongly polynomial time if it
satisfies the following three conditions:

(i) Arithmetic operations are applied exclusively to integers.
(ii) The number of arithmetic operations is bounded by a polynomial in the

number of integers in the input.
(iii) The space required by the algorithm is bounded by a polynomial in the size

of the input.

Definition 5. An algorithm which runs in strongly polynomial time is said to
be combinatorial if the only arithmetic operations used are addition, subtraction,
and multiplication.

3 Motivation and Related Work

Horn constraint systems arise in a number of problem domains including con-
straint logic programming [4], econometrics [5], and program verification [6]. Our
interest in Horn constraints arose from their application to Abstract Interpreta-
tion, which is a technique in program verification. Abstract Interpretation was
introduced in [7] and remains a highly effective methodology to approximate the
semantics of programs.

Associated with any computer program is its concrete semantics, i.e., the set
of execution traces it may produce. In general, the concrete semantics is non-
recursive. In fact, Rice’s theorem implies that all non-trivial questions about
the semantics of arbitrary programs are undecidable [8]. An abstract interpreter
constructs conservative approximations of the semantics over a properly chosen
domain. Static analysis over this chosen domain reveals interesting properties
of the concrete semantics. The domains that are chosen can either be relational
(where the relationships between program variables are taken into account) or
non-relational (where the relationships between program variables are essen-
tially ignored). The domain of intervals is a non-relational domain, whereas
difference-bound matrices (DBMs) and convex polyhedra are examples of rela-
tional domains. Non-relational domains can be analyzed more efficiently, whereas
the relational domains provide more precise information about the concrete
semantics.

A New Algorithm for Linear and Integer Feasibility in Horn Constraints 219

An abstract domain is characterized by a set of constraints belonging to a
constraint class. For example, DBMs are represented by conjunctions of differ-
ence constraints; i.e., constraints of the form xi − xj ≤ cij . Polyhedral convex
domains are represented by conjunctions of arbitrary linear constraints. Solu-
tion techniques for such constraint systems form the core of Satisfiability Mod-
ulo Theories (SMT) solvers, which are useful in certain program verification
procedures [9,10]. These solvers are also part of procedures for bounded model
checking of infinite state systems and test-case generation [11]. The Octagon Do-
main is represented by Unit Two Variable per Inequality (UTVPI) constraints,
i.e., constraints of the form: axi + bxj ≤ cij ; a, b ∈ {−1, 1}. The literature doc-
uments a fair amount of work in the field of UTVPI constraints [6,12]. Horn
constraints are more expressive than difference constraints; it can also be shown
that a feasible UTVPI system can be expressed as a Horn system [13]. Thus,
Horn systems can be thought of as an intermediate step between simple abstract
domains represented by intervals and DBMs and the more complicated abstract
domain represented by convex polyhedra.

Moreover, some uses of the techniques of Abstract Interpretation utilize linear
constraints involving the integer variables in a program [14]. In general, only a
few variables will occur in each constraint. If, given a system of constraints, the
maximum number of variables occurring is k (and the system is Horn), then we
are in the case of bounded width constraints. We can exploit this structure to
speed up the algorithm in this paper (see Section 7.1 below).

Our algorithm makes essential use of the fact that any feasible HCS can
be standardized into a system such that the corresponding polyhedron has a
least element. Thus our constraints belong to the class of min-closed constraints
studied in [15] and [16]. In [15], the constraints considered are very general and
in fact can be subsets of Dn for an arbitrary set D. Our approach is much less
general and exploits specific aspects of HCSs. In [16], the constraints are in fact
linear constraints, but additional linear programs must be introduced because of
the recognition problem, which asks whether a given system can be represented
by certain types of constraints. We avoid this by first standardizing the input.

In [1], we proposed the Lifting Algorithm, the first combinatorial algorithm
to check the feasibility of a HCS. This algorithm runs in time O(m · n2) and is
based on the following inference rule:

x1 − x2 − x3 − · · · − xk ≥ c �x ≥ �0
x1 ≥ c

where n is the number of variables and m is the number of constraints. We
organized the implications in a greedy fashion into a sequence of n − 1 rounds
and showed that in every round, one variable achieves its final value. Since each
round can be implemented in O(m·n) time, the algorithm runs in O(m·n2) time.
Algorithm 6.1 below is based on an entirely different insight, viz., the reduction
of feasibility checking for an HCS to the NCCD, MV, and H2D problems.

A linear program is said to be combinatorial if the entries in the constraint ma-
trix A are polynomially bounded in the dimensions of A. A strongly polynomial

220 K. Subramani and J. Worthington

time algorithm for combinatorial linear programs is given in [17]. The running time
is O(n5) for HCSs. We note that the algorithm in [17] is not combinatorial. Fur-
thermore, while the algorithm runs in strongly polynomial time for Horn Systems,
it is not strongly polynomial for Extended Horn Systems (Definition 8 below).

Depending on the implementations of NCCD, MV, and H2D used, our algo-
rithm may or may not be combinatorial. Our reduction is advantageous from the
standpoint of implementation. Well-tested libraries implementing algorithms for
the NCCD and MV problems are widely available. This not only simplifies the
implementation process, but also allows a certain degree of trust in the resulting
code.

4 The Implied DCS of a HCS

Let l1: x1 − x2 − x3 ≥ 4 denote a constraint of an HCS. Since all the variables
are required to be non-negative, we must have

x1 − x2 ≥ 4
x1 − x3 ≥ 4.

In a similar fashion, every constraint of the HCS P1:A · �x ≥ �b, �x ≥ �0 implies
a sequence of difference constraints. The conjunction of these constraints is a
DCS denoted by P2:A′ · �x ≥ �b′, �x ≥ �0. We say that P2 is the implied DCS
corresponding to the HCS P1.

By the discussion above,

{�x : A · �x ≥ �b, �x ≥ �0} ⊆ {�x : A′ · �x ≥ �b′, �x ≥ �0}.
Therefore, if P2 is infeasible, then so is P1. However, there exist simple examples
showing that the feasibility of P2 does not imply the feasibility of P1.

We note that:

(i) The DCS P2 has m′ constraints and n variables and can be solved in O(N)
time, where N is the running time of an NCCD algorithm.

(ii) We can assume that m′ = O(n2), since a DCS cannot have more than
O(n2) non-redundant constraints. Moreover, m′ is at most the number of
(−1) entries in the matrix A.

5 Least Elements of Horn Constraint Systems

For this section, we require a few concepts from [1].

Definition 6. A least element of a polyhedron defined by A · �x ≥ �b, �x ≥ �0 is a
vector �z ≥ �0 such that

(i) A · �z ≥ �b and
(ii) (∀�x ≥ �0) A · �x ≥ �b ⇒ �z ≤ �x.

Observe that a polyhedron can have at most one least element.

A New Algorithm for Linear and Integer Feasibility in Horn Constraints 221

Lemma 1 ([1]). Let P1:A · �x ≥ �b, �x ≥ �0 be a feasible HCS. Then P1 has a
least element.

Note that if P1 has a least element, then this element can be obtained by mini-
mizing the linear function �p · �x over P1, where �p > �0 is an arbitrary vector. For
simplicity, we set �p = �1. The least element can then be obtained by solving the
following linear program:

minimize
n∑

i=1

xi (3)

A · �x ≥ �b
�x ≥ �0.

The following lemma gives some information about least elements.

Lemma 2. Let P1:A · �x ≥ �b, �x ≥ �0 be a feasible HCS. In the optimal solution,
xi = 0 for at least one i.

Proof. Let �z, an n × 1 vector, denote the solution to the linear program (3)
constructed from P1. Suppose all entries of �z are strictly positive. Let Ψ denote
the objective function

∑n
i=1 xi. Let k = min{z1, z2, · · · , zn}. Observe that �u =

(�z− k�1) is also feasible for P1 (here we are using the Horn structure of A), and
�u < �z. Hence Ψ(�u) < Ψ(�z), which contradicts the optimality of �z.

Lemma 3. Let P1 be a feasible HCS and P2 its implied DCS. Let �x1 and �x2 be
the least elements of P1 and P2, respectively. Then �x2 ≤ �x1.

Proof. By the discussion in Section 4, the set of feasible solutions to P1 is a
subset of the set of feasible solutions to P2.

For what follows, we assume familiarity with the Lifting Algorithm given in
[1]. Given a feasible (standardized) HCS, the Lifting Algorithm returns its least
element. Lemma 4 below gives some information about how variables attain their
final values as the Lifting Algorithm executes.

Lemma 4 ([1]). Let P1 be a feasible HCS. If we apply one round of the Lifting
Algorithm, i.e., lift each variable once, at least one variable attains its final value
(its value in the least element).

The following lemma is a refinement of Lemma 4.

Lemma 5. Let

A · �x ≥ �b (4)
�x ≥ �0 (5)

be a feasible HCS whose least element contains at least one non-zero component.
There exists a variable xi such that

222 K. Subramani and J. Worthington

1. xi achieves its final value in the first round of lifting, and
2. the final value of xi is equal to a component of �b, say bk. The value bk is the

RHS of a constraint in which xi occurs positively.

Proof. Let x1, x2, . . . , xn be the variables of the HCS. We assume that the Lifting
Algorithm processes the variables in this order. Let xi be the least-numbered
variable which achieves its final value in the first round. We claim that the final
value of xi is bk, where bk is the RHS of a constraint in which xi occurs positively.

Let Y be the set of all variables which occur negatively in a constraint with
RHS bk and in which xi occurs positively. Note that there may be multiple such
constraints. We claim that no variable in Y is ever lifted. Let y ∈ Y . Once xi is
lifted for the first and only time, the HCS will contain a constraint of the form

xi − · · · − y − · · · ≥ 0.

If y is lifted after xi is, the RHS of this constraint will become positive, and xi

will be lifted again, a contradiction. The only other possibility is that y is lifted
before xi. If this were the case, then since y can’t be lifted again, this lifting must
take y to its final value. This contradicts the fact that xi is the least-numbered
variable to be lifted to its final value.

Note that a variable which is lifted in the first round might be lifted by an
amount which is not a component of �b, even if that variable achieves its final
value in the first round. The reason is that some other variable may have been
lifted first, and every lifting of a variable changes �b. Lemma 5 shows that this
can not be the case for all of the variables which are lifted to their final values
in the first round. Also observe that there could be a variable xj which occurs
negatively in a constraint in which xi occurs positively such that xj is lifted
in later rounds. In this case, the right hand side of the constraint must remain
non-positive (otherwise xi would be lifted again).

We now prove a relationship between the least element of an HCS and the
least element of its implied DCS. This is the crux of the correctness proof of
Algorithm 6.1 in Section 6.1.

Lemma 6. Let

P1:A · �x ≥ �b (6)
�x ≥ �0 (7)

be a standardized, feasible HCS whose least element contains at least one non-
zero component. Let xi be the variable guaranteed to exist by Lemma 5, and let
bk be the final value of xi. Let P2 be the implied DCS of P1. In the least element
of P2, xi = bk.

Proof. In P1, xi must occur positively in a constraint with RHS bk. Since xi is
lifted by bk and the Lifting Algorithm is greedy, bk must be the largest RHS
of the constraints in which xi occurs positively. Therefore bk will be the largest
RHS of the constraints in the implied DCS P2 in which xi occurs positively.

A New Algorithm for Linear and Integer Feasibility in Horn Constraints 223

Therefore, when applying one round of the Lifting Algorithm to P2, xi will be
lifted by at least bk. In fact, it must be lifted by exactly bk and never lifted again,
since the least element of P2 is less than or equal to the least element of P1 by
Lemma 3. The lemma follows by the correctness of the Lifting Algorithm.

6 The New Algorithm

In this section, we give an algorithm (Algorithm 6.1) for determining whether an
HCS is feasible. If the HCS is feasible, Algorithm 6.1 returns the least element of
the corresponding polyhedron. Algorithm 6.1 proceeds in stages. At each stage,
it converts an HCS into its implied DCS. We refer to this conversion as H2D.
Using an NCCD algorithm, it computes the least element of the implied DCS and
then uses this element to compute a new HCS. Upon completion, Algorithm 6.1
will have either computed the least element of the original HCS or determined
that it is infeasible.

6.1 Correctness

Lemma 7. Let P1 be a feasible HCS and let �x1 be its least element. Let �y be a
vector that satisfies the relation �y ≤ �x1. Consider the system:

P2:A · �x ≥ (�b − A · �y)
�x ≥ �0.

Function Horn-Check (P1:A, �b)

1: if (�b ≤ �0) then
2: assert(“System is feasible”).
3: return (�0).
4: end if

5: Initialize �o = �0.
6: Preprocess A as necessary (see discussion in Section 7.3).
7: for (i = 1 to (n− 1)) do

8: Replace P1 with its implied DCS P2:A
′ · �x ≥ �b′, x ≥ 0. (H2D)

9: Obtain the least element �z of P2 using an NCCD algorithm.
10: Set �o = �o+ �z.
11: if (A · �z ≥ �b) (MV) then
12: assert(“System is feasible”)
13: return (�o).
14: else

15: Set P1 to the HCS obtained by replacing �b with �b−A · �z.
{Note that this changes �b and not A. In essence, we have shifted the origin
to the point �z.}

16: end if

17: end for

18: assert(“System is infeasible”).

Algorithm 6.1: The Algorithm

224 K. Subramani and J. Worthington

The system P2 is feasible and its least element is �x1 − �y.

Proof. Clearly �x1 − �y is a feasible solution to P2. If �z < �x1 − �y were the least
element in P2, then �z+�y < �x1 would be feasible for P1, contradicting minimality
of �x1 for P1.

Theorem 1. Algorithm 6.1 is correct.

Proof. The algorithm terminates and returns either “feasible (with minimal el-
ement �o)” or “infeasible” on any input. Observe that P1 is feasible with least
element �0 if and only if all components of �b are non-positive. Hence the con-
ditional in Line 1 guarantees that the algorithm returns “feasible” with least
element �0 if and only if P1 is feasible with least element �0.

If the algorithm returns “feasible” with non-zero least element �o, then the
conditional in Line 11 must be true after some number of iterations. Note that
when the algorithm terminates, �z is the least element of the HCS for the current
value of �b: although �z is computed as the least element of the implied DCS, it
must be feasible for the corresponding HCS in order for the conditional in Line 11
to be true. Moreover, the least element of the implied DCS is less than or equal to
the least element of the HCS by Lemma 3. Replacing �b by �b−A ·�z is equivalent
to performing the substitutions xi = xi − zi on the constraints in �A · �x ≥ �b.
These substitutions are not performed on the non-negativity constraints. Since
�z must be less than the least element of the HCS in order for the substitutions
to be performed, each substitution defines a bijection between feasible points
of the HCS before the substitutions and feasible points of the HCS after the
substitutions (no component of a feasible point becomes negative). Therefore, if
the algorithm finds a feasible point of the HCS with an updated value of �b, the
original HCS P1 is feasible. It remains to show that the returned value of �o is the
least element of P1. If not, the least element of P1 could be mapped according
to the (monotonic) substitutions performed and contradict the fact that when
the conditional in Line 11 is true, the algorithm has found the least element to
some HCS.

Finally, we show that Algorithm 6.1 returns the least element of P1 if P1 is
feasible with at least one non-zero component in its least element. In this case,
the algorithm will execute the body of the for loop on Line 7 at least once. At
every iteration, the least element of the current HCS, �x1, and the least element
of its implied DCS, �y, are equal in at least one component by Lemma 6. By
Lemma 3, �y ≤ �x1. Therefore we can apply Lemma 7 to the new system in which
�b is replaced by �b − A · �y. Every iteration decreases the number of variables
which only occur positively in constraints with positive RHSs (and which remain
so for the rest of the execution). By Lemma 2, this can happen at most n − 1
times. Therefore, if Algorithm 6.1 has not found a feasible solution after n − 1
iterations, there is no feasible solution. The theorem follows.

Note that even if we do not compute the solution of the implied DCS (i.e., find
the least element of P2), but only do one cycle of the Lifting Algorithm on the
implied DCS at each step, the same result holds by Lemma 6.

A New Algorithm for Linear and Integer Feasibility in Horn Constraints 225

Remark 1. Since Algorithm 6.1 finds the least element of the polyhedron corre-
sponding to an HCS, we can ignore constraints of the form −x2 ≥ −6 until the
algorithm has finished executing.

7 Analysis

Let m be the number of constraints and n be the number of variables, so A is
m×n and �b is m× 1. Note that we can ignore Lines 1 – 6 when calculating the
complexity of the Algorithm 6.1: Lines 1 – 5 require only O(m) time and Line 6
is not worth doing if it will take more time to execute than the for loop.

The for loop on Lines 7 – 17 executes O(n) times in the worst case. Lines 8,
9, and 11 are discussed below. The modifications to P1 in Line 15 require O(m)
time since A ·�z has already been computed in Line 11. In summary, and ignoring
operations of low complexity, the time required for Algorithm 6.1 is:

O(n(H2D + NCCD + MV)).

We have thus expressed the running time of Algorithm 6.1 in terms of the
running times of three subproblems.

7.1 Analysis of H2D

As mentioned in Section 4, there are at most O(n2) many non-redundant differ-
ence constraints in the implied DCS of an HCS. The difference constraints can
be stored in an n × n matrix D, where Di,j is equal to the largest entry of �b
occurring to the right of xi−xj in the implied DCS (i.e., the strongest difference
constraint involving xi − xj).

In the worst case, each entry of �b bounds n−1 many constraints in the implied
DCS, so we must examine each entry of A when computing D. Therefore the
complexity of computing D is O(m ·n). Unfortunately, it is unclear how to avoid
recomputing D at each iteration of the for loop. Note that �b changes during
each iteration of the for loop. Suppose that

xi − xj ≥ 4(= bk)

is the strongest difference constraint on xi − xj at some iteration. At the next
iteration, suppose bk becomes 5. There is no guarantee that

xi − xj ≥ 5

is now the strongest constraint on xi−xj since their difference could be bounded
by other entries of �b which have also changed since the last iteration.

However, for certain special HCSs, some preprocessing will allow us to do
better than O(m · n), even though we will still compute D at each iteration.

Definition 7. An HCS P1 is said to be of bounded width k if every constraint
contains at most k non-zero entries.

226 K. Subramani and J. Worthington

For example, a DCS is an HCS of bounded width 2. For an HCS of bounded
width k, we can create an n×n matrix D′ to aid in the construction of D. Each
entry of D′ will contain a list of pointers to the entries of �b which appear to
the right of xi − xj in the implied DCS. The matrix D′ can be constructed in
time O(m ·n) and need only be constructed once. To construct D, the algorithm
examines each entry of D′ and finds the smallest referenced entry of �b. Since
each entry of �b can appear in at most k − 1 entries of D′, D can be constructed
from D′ in O(n2 + (k − 1) · m) = O(n2 + m), when k is a constant.

7.2 Analysis of NCCD

We must make a few modifications to ensure that an NCCD algorithm returns
the least element of the DCS. These operations do not significantly affect the
time required. Let m′ denote the number of non-redundant constraints in the
implied DCS of P1. Note that m′ ≤ n2 (see Section 4) and that m′ is constant
over iterations of Algorithm 6.1.

We have three options for this subproblem:

(i) Using the Bellman-Ford algorithm for NCCD would result in this step
being O(m′ · n).

(ii) An O(
√

n·m′ ·log C) algorithm for the NCCD problem is given in [18]. Here
C is the absolute value of the negative entry in �b of greatest magnitude.

(iii) By Lemma 6, we could also perform one round of the Lifting Algorithm on
the DCS (i.e., lift each variable once). This requires O(n2)(= O(m′)) time.

7.3 Analysis of MV

The naive algorithm for MV is O(m ·n). However, we can do better by using the
“Mailman Algorithm” given in [19].

Theorem 2 ([19]). Let A be an m×n matrix. After an initial O(m ·n) prepro-
cessing step, subsequent multiplications of A with arbitrary m× 1 vectors can be
performed in O((log |Σ|) m·n

log(max(m,n))), where |Σ| ≥ 2 is the number of distinct
entries in A.

Since A is a standardized Horn matrix, the number of distinct entries is |{−1, 1,
0}| = 3. As mentioned above, the preprocessing does not affect the time bound
of Algorithm 6.1.

7.4 Analysis of Algorithm 6.1

The above discussion implies that by judiciously choosing which algorithms to
use for the three subproblems, we can achieve the following time bound for
Algorithm 6.1:

O(n(m · n + min{m′ · n,
√

n · m′ · log C, m′} +
m · n

log(max(m, n))
)).

A New Algorithm for Linear and Integer Feasibility in Horn Constraints 227

Note that a better algorithm for the H2D problem immediately yields an o(m·n2)
algorithm for checking the feasibility of an HCS (for various special cases). In
the bounded width case, using the matrix D′ described in Section 7.1 yields a
time bound of O(n3 + m · n + m·n2

log(max(m,n))).

8 Extended Horn Constraints

Definition 8. A polyhedral system

A · �x ≥ �b
�x ≥ �0

is said to be an Extended Difference Constraint System (EDCS) if each row of
A contains at most two non-zero entries with one of these entries being 1 and
the other being an arbitrary negative integer.

For instance, x1 − 2 · x2 ≥ 3 is an extended difference constraint.

Definition 9. A polyhedral system

A · �x ≥ �b
�x ≥ �0

is said to be an Extended Horn System (EHS) if each row of A contains at most
one positive entry with the entry being 1 and the other entries being arbitrary
non-positive integers.

For instance, x1 − x2 − 3 · x5 − 7 · x9 ≥ −3 is an extended Horn constraint.
We now argue that with a slight modification, Algorithm 6.1 works correctly

even for Extended Horn Systems. We must make the following modifications to
Algorithm 6.1:

(i) Line 8 must be modified to transform an EHS into a DCS. This can be
accomplished by first changing all negative coefficients to −1, which trans-
forms the EHS to an HCS, and then proceeding with the H2D procedure.
For example, the extended Horn constraint

x1 − x2 − 3 · x5 − 7 · x9 ≥ −3

becomes the following conjunction of difference constraints:

x1 − x2 ≥ −3
x1 − x5 ≥ −3
x1 − x7 ≥ −3.

We also assume that the EHS is standardized, implying that each variable
occurs at least once positively and at least once negatively.

228 K. Subramani and J. Worthington

(ii) In general, the Mailman Algorithm can no longer be used to improve the
running time of MV, because we are not guaranteed a useful bound on the
number of distinct entries in A. The running time of the modified algorithm
is:

O(n(m · n + min{m′ · n,
√

n · m′ · log C, n2} + m · n)).

Note that the inability to use the Mailman Algorithm implies that the
running time is at least O(m · n2) even for bounded width EHS.

The correctness of this procedure follows from the discussion of the Lifting
Algorithm applied to EHSs in [1].

9 Conclusion

In this paper, we introduced a new algorithm for checking the feasibility of Horn
constraint systems. For systems of bounded width constraints, a natural subclass
corresponding to “loosely coupled” systems, the running time can be improved
to O(n3 + m · n + m·n2

log(max(m,n))). The algorithm is a Turing-reduction of HCS
feasibility checking to the NCCD, MV, and H2D problems. The theory connect-
ing HCS feasibility and the three aforementioned problems is developed in this
paper and is, to the best of our knowledge, novel. The complexity of the new
algorithm is expressed in terms of the complexities of these three problems. Ad-
vancement in techniques for the (slowest of the) latter problems results directly
in an improvement to our algorithm. We also extended our analysis to include
the case of Extended Horn constraints.

From our perspective, the following issues remain to be studied:

(i) A lower bound for checking the feasibility of an arbitrary HCS — All known
algorithms for feasibility checking in a DCS run in Ω(m ·n) time. It would
be interesting to obtain a bound of Ω(n · N) for feasibility checking in an
HCS, where N is the running time of a DCS algorithm. Such a lower bound
would imply that the bound obtained in this paper is the best that we can
hope for without a new asymptotic lower bound for feasibility checking of
a DCS.

(ii) Arbitrary boolean combinations of Horn constraints — From the program
verification perspective, satisfiability checking in formulas in which the
atoms are Horn constraints is of enormous importance. Although this prob-
lem is trivially and strongly NP-complete, enumeration bounds have been
obtained for the cases in which the atoms are either difference constraints
or UTVPI constraints (see [20] for details).

Acknowledgements

This research was conducted primarily in the Carnegie Mellon University School
of Computer Science, where the first author was an Invited Professor. We are
grateful to R. Chandrasekaran for helpful discussions.

A New Algorithm for Linear and Integer Feasibility in Horn Constraints 229

References

1. Chandrasekaran, R., Subramani, K.: A combinatorial algorithm for horn programs.
In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1114–
1123. Springer, Heidelberg (2009)

2. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley & Sons, New York (1999)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2001)

4. Lever, J., Wallace, M., Richards, B.: Constraint logic programming for scheduling
and planning. British Telecom Technology Journal 13, 73–80 (1995)

5. Truemper, K.: Personal communication (2003)
6. Miné, A.: The Octagon Abstract Domain. Higher-Order and Symbolic Computa-

tion 19, 31–100 (2006)
7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252 (1977)

8. Homer, S., Selman, A.L.: Computability and Complexity Theory. Springer, Hei-
delberg (2001)

9. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N.: The ICS decision
procedures for embedded deduction. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS (LNAI), vol. 3097, pp. 218–222. Springer, Heidelberg (2004)

10. Ford, J., Shankar, N.: Formal verification of a combination decision procedure. In:
CADE, pp. 347–362 (2002)

11. Duterre, B., de Moura, L.: The yices smt solver. Technical report, SRI International
(2006)

12. Harvey, W., Stuckey, P.J.: A unit two variable per inequality integer constraint
solver for constraint logic programming. In: Proceedings of the 20th Australasian
Computer Science Conference, pp. 102–111 (1997)

13. Lewis, H.R., Papadimitriou, C.H.: Symmetric space-bounded computation. Theor.
Comput. Sci. 19, 161–187 (1982)

14. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1978, pp. 84–96. ACM, New York
(1978)

15. Jeavons, P.G., Cooper, M.C.: Tractable constraints on ordered domains. Artif.
Intell. 79, 327–339 (1995)

16. van Maaren, H., Dang, C.: Simplicial pivoting algorithms for a tractable class of
integer programs. J. Comb. Optim. 6, 133–142 (2002)

17. Tardos, E.: A strongly polynomial algorithm to solve combinatorial linear pro-
grams. Oper. Res. 34, 250–256 (1986)

18. Goldberg, A.V.: Scaling algorithms for the shortest paths problem. SIAM Journal
on Computing 24, 494–504 (1995)

19. Liberty, E., Zucker, S.W.: The mailman algorithm: A note on matrix–vector mul-
tiplication. Inf. Process. Lett. 109, 179–182 (2009)

20. Seshia, S.A., Subramani, K., Bryant, R.E.: On solving boolean combinations of
UTVPI constraints. Journal on Satisfiability, Boolean Modeling and Computa-
tion 3, 67–90 (2007)

Timetable Edge Finding Filtering Algorithm for

Discrete Cumulative Resources

Petr Viĺım

IBM, V Parku 2294/4
148 00 Praha 4 - Chodov, Czech Republic

petr vilim@cz.ibm.com

Abstract. Edge Finding filtering algorithm is one of the reasons why
Constraint Programming is a successful approach in the scheduling do-
main. However edge finding for cumulative resources was never as suc-
cessful as edge finding for disjunctive resources. This paper presents a
new variant of the edge finding algorithm which improves filtering by
taking into account minimum capacity profile - a data structure known
from timetabling algorithm. In comparison with standard and extended
edge finding algorithms the new algorithm is stronger but it may need
more iterations in order to reach the fixpoint. Time complexity of the
algorithm is O(n2) where n is number of activities on the resource. We
also propose further improvement of the filtering by incorporating some
ideas from not-first/not-last and energetic reasoning algorithms. The fil-
tering power of the algorithm is tested on computation of destructive
lower bounds for 438 open RCPSP problems. For 169 of them we im-
prove current best lower bound, in 9 cases backtrack free.

keywords: Constraint Programming, Scheduling, Discrete Cumulative
Resource, Propagation.

1 Introduction

This paper focuses on discrete cumulative resource – an abstraction of manpower,
electricity, machinery or any other (renewable) resource which is used to perform
activities (tasks to be scheduled). Although the resource can be used by several
activities simultaneously, total resource capacity used at any time cannot exceed
capacity limit C. In a constraint programming framework we usually associate a
constraint with each resource. The task of this resource constraint is to remove
inconsistent values from temporal variables associated with activities. For the
rest of the paper we will concentrate on propagation for a single resource.

A discrete cumulative resource is characterized by maximum capacity of the
resource C ∈ N and a set T of n activities, n = |T |. Each activity has the
following attributes:

– the earliest start time esti ∈ N,
– the latest completion time (deadline) lcti ∈ N,
– the processing time (duration) pi ∈ N (a constant),

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 230–245, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Timetable Edge Finding Filtering Algorithm 231

esti lcti

i

i

lcti −pi esti + pi

Fig. 1. Two extreme positions of activity i. Re-
gardless of its position, activity i always uses
the resource during [lcti −pi, esti +pi].

C

time

Fig. 2. Accumulated minimum
capacity profile

– the required capacity ci ∈ N (a constant),
– and energy of the activity ei = ci pi (a constant).

Activities are assumed to be non-preemptive: once the processing of activity
i starts at time t then it must continue without preemption until t + pi. For
each activity we maintain a decision variable for the start time of the activity
with domain [esti, lcti − pi]. The aim of the resource constraint is to remove
inconsistent values from this domain by increasing esti and decreasing lcti.

1.1 Related Works

This section reviews some of the existing techniques to propagate cumulative
resource constraint.

Timetabling. The idea of timetabling is to look for activities i such that
lcti − pi < esti + pi, see Figure 1. Such activities necessarily use the resource
during interval [lcti − pi, esti + pi]. By aggregating these intervals we compute
a minimum capacity profile (a timetable) which shows minimum resource usage
over time (Figure 2). Typically, the minimum capacity profile is maintained
during the search and used to detect infeasibility and also to update time bounds
of activities. For more information see [6, chapters 3.3.1 and 2.1.1].

Edge Finding and Extended Edge Finding. Unlike timetabling, edge find-
ing propagation is based on reasoning about a set of activities. Let us consider
a set of activities Ω ⊆ T . For Ω we define earliest starting time estΩ, latest
completion time lctΩ and energy eΩ as:

estΩ = min{esti, i ∈ Ω}
lctΩ = max{lcti, i ∈ Ω}

eΩ =
∑
i∈Ω

ei

The total energy available for Ω is C (lctΩ − estΩ). If Ω requires more energy
then there is no solution (this is called overload rule):

∀Ω ⊆ T : (C (lctΩ − estΩ) < eΩ ⇒ fail)

Edge finding is also able to update temporal bounds of activities. Informally
speaking, it checks whether scheduling an activity i at its earliest start time

232 P. Viĺım

A

B

C D

estA = estD = 0

estB = estC = 2

lctA = lctB = lctC = 5

C = 3

0 5

act. est lct p c

A 0 5 1 3
B 2 5 3 1
C 2 5 2 2
D 0 99 4 2

Fig. 3. An example from [11]: resource with capacity C = 3 and activities {A, B, C, D}.
The table on the right summarizes attributes of these activities. Edge finding updates
estD from 0 to 4 because scheduling D at 0 would lead to overflow in interval [0, 5].

estΩ = 1 lctΩ = 5

lcti = 6esti = 0 i

0 2 4 6

Fig. 4. Activity i with esti = 0, lcti = 6,
pi = 4 and ci = 1. Activity i requires at
least 3 energy units during [1, 5]. However
edge finding does not take them into ac-
count.

lcti = 6esti = 0

0 2 4 6

Fixed part, pTT
i = 2 Free part, pEF

i = 2

Fig. 5. Fixed and free parts of activity i
with esti = 0, lcti = 6, pi = 4

esti would lead to overload as described above. If it is the case then esti is
updated. For an example see Figure 3, details are described in Section 4. There
is also a symmetrical algorithm to update lcti. Paper [5] provides algorithms
for both standard and extended edge finding algorithms with time complexity
O(kn2) (k is number of distinct capacity demands k = |{ci, i ∈ T }|). There
is also a standard (not extended) edge finding algorithm with time complexity
O(kn log n) in [11]. There are also independent attempts to design edge finding
algorithms with better time complexities by Roger Kameugne.

Energetic Reasoning. Edge finding is not perfectly accurate in computation
of energy requirement during the interval [estΩ, lctΩ]. In particular, eΩ does
not take into account activities that only partially overlap with [estΩ, lctΩ], see
Figure 4. Energetic reasoning (also called CNP-ER) is able to take such partial
overlaps into account. It also considers more intervals than only [estΩ, lctΩ].
Chapter 3.3.6 in [6] presents an algorithms to detect infeasibility and to update
temporal bounds, their time complexities are O(n2) and O(n3).

Dominance Relations. Chapter 4.2.4 in [6] contains a detailed analysis of
dominance relations between different filtering algorithms for cumulative re-
sources. The conclusion is that energetic reasoning is stronger than both time-
tabling and edge finding. However edge finding does not dominate timetabling
and vice versa. Therefore edge finding can be improved by taking into account
the timetable as we suggest in this paper. Energetic reasoning is still stronger

Timetable Edge Finding Filtering Algorithm 233

than the proposed algorithm but slower (time complexity O(n3) versus O(n2)).
What we propose is a good trade off between filtering power and speed.

Note that for practical reasons the proposed algorithm is not designed to
subsume the timetable algorithm: it is faster to do some propagation by the
timetable algorithm.

2 TimeTable Edge Finding

The idea is to improve computation of the energy consumed during [estΩ, lctΩ]
using information from the timetable. Let us consider again the example on
Figure 4. From timetabling point of view, activity i contributes to the minimum
capacity profile by 2 energy units on interval [2, 4]. By using timetable in the
edge finding we will be able to take the 2 energy units into account and therefore
improve filtering. Note that it is still less than the 3 energy units detected by
energetic reasoning but often the values are the same.

In order to use timetable we split each activity into two parts: fixed part
(counted in the timetable) and remaining free part. See Figures 1 and 5. The split
is done in the following way. For each activity i we compute its fixed duration
pTT

i and free duration pEF
i as:

pTT
i = max (0, esti + pi − (lcti − pi)) pEF

i = pi − pTT
i

Fixed and free parts are handled differently:

Fixed Part. If pTT = 0 then the fixed part is empty and we ignore it. Oth-
erwise we increase the minimum consumption level in the timetable on interval
[lcti − pi, esti + pi] by ci.

Free Part. Empty free parts (pEF
i = 0) are ignored. Activities with non-empty

free parts form a set T EF = {i, i ∈ T & pEF > 0}. We also define the energy
of the free part as eEF

i = ci pEF
i . We can consider a free part of activity i as a

separate activity with the same earliest start time esti and latest completion
time lcti as the original activity i. However, unlike the original activity, the free
part is preemptive: it can (and must) be suspended during [lcti − pi, esti + pi].

2.1 Timetable

Timetable records the minimum capacity consumption at each time point t. In
other words this data structure represents a function TT(t) such that TT(t) is
the sum of capacities of all fixed parts which overlap time t (Figure 2).

For the presented algorithm we need to know how much energy is stored
in the timetable for interval [estΩ, lctΩ]. To compute it we introduce functions
ttAfterEst(i) and ttAfterLct(i), they compute the total energy stored in the
timetable after esti and after lcti:

ttAfterEst(i) =
∑

t∈N∧t≥esti

TT(t) ttAfterLct(i) =
∑

t∈N∧t≥lcti

TT(t)

234 P. Viĺım

Algorithm 1. Overload Checking

1 ��� b ∈ T EF �� ����	
2 eEF := 0 ;
3 ��� a ∈ T EF in non-increasing order by esta ��
4 �� lcta ≤ lctb
��	 ����	

5 eEF := eEF + eEF
a ;

6 �� C(lctb − esta) < eEF + ttAfterEst[a] − ttAfterLct[b]
��	
7 ���
 ;
8 �	� ;
9 �	� ;

Let us consider set Ω ⊆ T and activities a, b ∈ Ω such that esta = estΩ and
lctb = lctΩ. Then the energy stored in the timetable for interval [estΩ, lctΩ] is
ttAfterEst(a) − ttAfterLct(b). For simplicity we define also:

ttAfterEst(Ω) = ttAfterEst(a) where a ∈ Ω and esta = estΩ

ttAfterLct(Ω) = ttAfterLct(b) where b ∈ Ω and lctb = lctΩ

Functions ttAfterEst(i) and ttAfterLct(i) can be computed from function
TT(t) in O(n log n) as follows. We sort activities into four lists: according to
esti + pi, lcti − pi, esti and lcti. Then we sweep over all these events in anti-
chronological order. During the sweep we maintain total energy stored in the
timetable after the current event. The result of the computation is stored in
arrays ttAfterEst and ttAfterLct.

2.2 Overload Checking

We start by the algorithm for checking infeasibility. Let’s consider set Ω ⊆ T EF.
Energy of free parts of activities in Ω is eEF

Ω =
∑

i∈Ω eEF
i . Therefore mini-

mum energy consumption by both fixed and free parts during [estΩ, lctΩ] is
eEF
Ω + ttAfterEst (Ω)− ttAfterLct (Ω). However energy available in [estΩ , lctΩ] is

C (lctΩ − estΩ). Therefore remaining energy “reserve” in [estΩ, lctΩ] is:

reserve(Ω) = C (lctΩ − estΩ) − (eEF
Ω + ttAfterEst (Ω) − ttAfterLct (Ω))

If the reserve is negative then the problem is infeasible:

∀Ω ⊆ T EF : (reserve(Ω) < 0 ⇒ fail)

Clearly it is not necessary to check all sets Ω ⊆ T EF. Let us consider two sets
Ω1 and Ω2 such that:

estΩ1 = estΩ2 lctΩ1 = lctΩ2 eEF
Ω1

> eEF
Ω2

Then it is enough to check only set Ω1. Therefore the rule must be checked only
for sets Ω with the following property:

∀i ∈ T EF : esti ≥ estΩ & lcti ≤ lctΩ ⇒ i ∈ Ω

Timetable Edge Finding Filtering Algorithm 235

pEF
i

esti

Inside
pEF

i

esti

Right

pEF
i

esti

Left
pEF

i

esti

Through

estΩ lctΩ

Fig. 6. Different relative positions of activity i ∈ T EF and set Ω such that scheduling i
on esti increases energy consumption in [estΩ , lctΩ]. The increase is marked by hatched
lines.

Table 1. Additional consumption by activity i in [estΩ , lctΩ] when scheduled on esti

Position Characterization Additional consumption

Inside estΩ ≤ esti & esti + pEF
i ≤ lctΩ eEF

i

Right estΩ < esti & lctΩ < esti + pEF
i ci(lctΩ − esti)

Left esti < estΩ < esti + pEF
i < lctΩ ci(esti +pEF

i − estΩ)
Through esti ≤ estΩ & lctΩ ≤ esti + pEF

i ci(lctΩ − estΩ)
Out Otherwise 0

Such sets Ω are traditionally called task intervals.
Algorithm 1 checks infeasibility by the rule above. The idea is to pick a task

b ∈ T EF and iterate over sets Ω such that lctΩ = lctb. Time complexity of the
algorithm is O(n2).

2.3 Time Bound Adjustment Rule

Value esti is invalid if scheduling activity i on esti would cause overload as
described above. In this case esti can be updated. To check such potential over-
loads, we need to compute how much additional energy activity i ∈ T EF would
require during [estΩ, lctΩ] if i is scheduled on esti. If i ∈ Ω then the whole energy
of i is already counted so we concentrate only on the case i �∈ Ω. For i �∈ Ω we
distinguish four relative positions of Ω and free part of i such that scheduling the
free part of i on esti increases energy consumption in [estΩ, lctΩ]. See Figure 6
and Table 1.

Let function add(estΩ, lctΩ, i) denote additional energy consumption by ac-
tivity i in [estΩ , lctΩ] as defined by Table 1. Scheduling activity i on esti causes
overload with set Ω if:

reserve(Ω) < add(estΩ, lctΩ, i)

In this case current esti can be updated. In the following we will show how to
compute this update.

We start by computation of the maximum duration that activity i can spend
inside [estΩ, lctΩ]. This duration has two parts:

236 P. Viĺım

1. Mandatory part: the part of i which is in the timetable and which overlaps
with [estΩ , lctΩ]. It cannot move and therefore it must stay inside [estΩ, lctΩ].

2. Optional part: this is the maximum of free duration pEF
i which can still fit

inside [estΩ, lctΩ] considering reserve(Ω).

The mandatory part is intersection of intervals [estΩ, lctΩ] and [lcti − pi, esti + pi].
Its length is:

mandatoryIn(estΩ, lctΩ, i) =
= max (0, min (lctΩ, esti + pi) − max (estΩ, lcti − pi))

Maximum length of the optional part is:

maxAddIn(Ω, i) =
⌊

reserve(Ω)
ci

⌋

The remaining duration of i must be spent after lctΩ. Therefore esti can be
updated to the following new value:

esti := lctΩ −mandatoryIn(estΩ, lctΩ, i) − maxAddIn(Ω, i)

The full propagation rule is:

∀Ω ⊂ T EF, ∀i ∈ T EF \ Ω : reserve(Ω) < add(estΩ, lctΩ, i) ⇒
esti := lctΩ −mandatoryIn(estΩ, lctΩ, i) − maxAddIn(Ω, i)

There is quite a big difference between the rule above and standard edge
finding (or extended edge finding) propagation rule. Standard edge finding tries
to find best subset Ω′ ⊆ Ω to immediately achieve the best update of esti. The
rule above fixes only potential overflow with Ω. Unlike standard edge finding it
doesn’t notice that the new esti can be still invalid with respect to some Ω′ ⊂ Ω.
The proposed rule simply assumes that the algorithm will run again and if there
is still a problem with the new esti then it will be updated again. In this respect
it may take more iterations for this algorithm to reach the fixpoint. In practice
it is not a big problem as discussed later in section 2.5.

2.4 Time Bound Adjustment Algorithm

First of all, notice that to achieve maximum propagation it is enough to concen-
trate on sets Ω in the form of task intervals. The reason is the same as for the
overload rule.

The idea of the algorithm is to iterate over sets Ω in the form of task intervals
in the same way as the overload algorithm does. For each set Ω we also compute
maximum value of add(estΩ, lctΩ, i) over all i ∈ T EF \Ω. Let ι be activity i such
that add(estΩ, lctΩ, i) is maximal. We distinguish two cases:

1. If reserve(Ω) ≥ add(estΩ , lctΩ, ι) then activity ι cannot be updated by Ω.
And because add(estΩ, lctΩ , ι) is maximal, Ω cannot update any other ac-
tivity i ∈ T EF \ Ω neither. Thus we can continue with the next set Ω.

Timetable Edge Finding Filtering Algorithm 237

2. If reserve(Ω) < add(estΩ, lctΩ, ι) then the algorithm updates estι. There
could be more activities than only ι which could be updated by Ω. However
the algorithm does not update them, they will be updated in the next iter-
ation of the algorithm. This is the second reason why the algorithm needs
more iterations to reach the fixpoint. This issue is discussed in Section 2.5.

It remains to show how to maintain ι during the algorithm. The value of function
add(estΩ, lctΩ, i) depends on the relative position of i and Ω as described in
Table 1. To maintain the maximum of add(estΩ, lctΩ , i) the algorithm is split
into three phases, each phase deals only with some relative positions. In the
following we describe each phase separately. For simplicity we will assume in the
description that there are no duplicates in esti and lcti. However the algorithm
is sound even in case of duplicates.

Inside and Right. For Inside and Right positions we iterate over activities a
and b the same way as we do in the Algorithm 1 for overload checking (lines 3–7
in Algorithm 2). That is, in outer loop we iterate over activity b (in arbitrary
order) and in the inner loop we iterate over activity a in non-increasing order by
esta. If lcta ≤ lctb then activities a and b define set Ω = {j, j ∈ T EF & esta ≤
estj & lctj ≤ lctb}, its energy eEF

Ω is stored in variable eEF.
The set of activities in Inside or Right position with Ω is I = {i, i ∈

T EF & estΩ ≤ esti & lctΩ < lcti}. Therefore as we iterate over activities a,
each activity a is either put into Ω (if lcta ≤ lctb, line 9) or put into I (if
lcta > lctb). Each time when i is added into I we have to recompute ι. Ac-
cording to Table 1 value add(estΩ, lctΩ, i) for positions Inside and Right can be
computed as min (eEF

i , ci (lctb − esti)). Notice that this value does not depend at
all on activity a. This justifies computation of ι on lines 10–11.

Finally, if reserve(Ω) is less then add(estΩ, lctΩ, ι) then estι is updated (lines
13 and 14).

Through. Again there are two nested cycles over activities a and b which
define set Ω = {j, j ∈ T EF & esta ≤ estj & lctj ≤ lctb}. Energy eEF

Ω is stored
in variable eEF. However in comparison with the previous phase we iterate over
activities a in reverse order. That is, we gradually remove activities a from Ω.

As we iterate over activities a we first check whether a ∈ Ω (line 21). If a ∈ Ω
then we remove it from Ω (line 25) but just before the removal we check whether
ι can be updated by Ω (lines 22–24). Furthermore if esta + pEF

a ≥ lctb (line 27)
then activity a is in Through position with all following sets Ω. In this case ι
needs to be recomputed. According to Table 1 value add(estΩ, lctΩ, i) for case
Through is ci(lctΩ − estΩ). Therefore the maximum value of add(estΩ, lctΩ, i)
over all activities in Through position with Ω is achieved by the activity with
the maximum capacity (lines 27–28).

Left. One more time, activities a and b define set Ω such that estΩ = esta

and lctΩ = lctb; energy eEF
Ω is stored in variable eEF. However this time the

outer cycle is over variable a in arbitrary order (line 32) and inner cycle is over
variable b in non-decreasing order of estb (line 36). For each a we start with the

238 P. Viĺım

Algorithm 2. Adjustments of esti

1 ��� i ∈ T EF ��

2 est′i := esti ;
3 ��� b ∈ T EF �� ����	
4 // Cases “Inside” and “Right”
5 eEF := 0 ;
6 ι := −1;
7 ��� a ∈ T EF in non-increasing order by esta �� ����	
8 �� lcta ≤ lctb
��	

9 eEF := eEF + eEF
a ;

10 �
�� �� ι = −1 �� min (eEF
a , ca (lctb − esta)) > min (eEF

ι , cι (lctb − estι))
11
��	 ι := a ;
12 reserve := C (lctb − esta) − eEF − (ttAfterEst [a] − ttAfterLct [b]) ;
13 �� ι �= −1 �	� reserve < min (eEF

ι , cι (lctb − estι))
��	

14 est′ι := max (est′ι, lctb −mandatoryIn(esta, lctb, ι) − �reserve/ cι�) ;
15 �	� ;
16 // Case “Through”
17 ι := −1;
18 ��� a ∈ T EF in non-decreasing order by esta,
19 break ties by non-increasing esta + pEF

a
20 �� ����	
21 �� lcta ≤ lctb
��	 ����	
22 reserve := C (lctb − esta) − eEF − (ttAfterEst [a] − ttAfterLct [b]) ;
23 �� ι �= −1 �	� reserve < cι(lctb − esta)
��	

24 est′ι := max (est′ι, lctb −mandatoryIn(esta, lctb, ι) − �reserve/ cι�) ;
25 eEF := eEF − eEF

a ;
26 �	� ;
27 �� esta +pEF

a ≥ lctb �	� (ι = −1 �� ca > cι)
��	
28 ι := a ;
29 �	� ;
30 �	� ;
31 // Case “Left”
32 ��� a ∈ T EF �� ����	
33 eEF := 0 ;
34 ι := −1;
35 Q := queue of activities i ∈ T EF sorted by non-decreasing esti + pEF

i ;
36 ��� b ∈ T EF in non-decreasing order by estb ��
37 �� esta ≤ estb
��	 ����	

38 eEF := eEF + eEF
b ;

39 ���
� estQ.top +pEF
Q.top < lctb �� ����	

40 i := Q.dequeue ;
41 �� esti < esta �	� esta < esti +pEF

i �	�

42 (ι = −1 �� ci(esti + pEF
i − esta) > cι(estι + pEF

ι − esta))
43
��	 ι := i ;
44 �	� ;
45 reserve := C (lctb − esta) − eEF − (ttAfterEst [a] − ttAfterLct [b]) ;
46 �� ι �= −1 �	� reserve < cι(estι +pEF

ι − esta)
��	

47 est′ι := max (est′ι, lctb −mandatoryIn(esta, lctb, ι) − �reserve/ cι�) ;
48 �	� ;
49 �	� ;
50 ��� i ∈ T EF ��

51 esti := est′i ;

Timetable Edge Finding Filtering Algorithm 239

empty set Ω (line 33) and we gradually add into Ω activities b (line 38) such
that esta ≤ estb.

Activities which are in the Left position with Ω are I = {i, i ∈ T EF & esti <
estΩ < esti + pEF

i < lctΩ}. As we iterate over b, value lctΩ = lctb is increasing
and set I is growing: there are more activities i fulfilling condition esti + pEF

i <
lctΩ. To enumerate all activities i as they are added into I we create a queue
Q of all activities sorted by esti + pEF

i (line 35). Each time we change lctΩ by
adding b into Ω we also enumerate all activities i which newly fulfill condition
esti + pEF

i < lctΩ (lines 39–40). These activities are candidates to be added into
I. If they really belong to I (line 41) then we check whether i is better than ι
(line 42). Note that for position Left add(estΩ, lctΩ, i) = ci(esti + pEF

i − estΩ),
see Table 1. Finally, after each addition of b into Ω we check whether ι can be
updated by Ω (lines 45–47).

2.5 Time Complexity

Time complexity of Algorithm 2 is O(n2): there are nested cycles over variables
a and b with max n iterations each. The cycle on lines 39–44 is executed at most
n times for each a because each time i is removed from queue Q.

As explained before, the Algorithm 2 does not make all updates by the prop-
agation rule in one run because it updates only activity ι with the maximum
potential overload. The remaining activities are updated in the next run(s). Fur-
thermore it does not look over all subsets Ω′ ⊆ Ω to find the best possible
update as standard edge finding algorithm does. Therefore it is not possible to
directly compare time complexity O(n2) of Algorithm 2 with time complexities
O(kn2) and O(kn log n) of algorithms [5, 11].

Nevertheless, we believe that additional iterations needed to reach the fixpoint
are not such a big disadvantage. There are several important aspects:
1. Even if the algorithm would fix all potential overflows with the current

bounds, new bounds may generate new potential overflows (especially after
applying symmetrical algorithm to update lcti). Therefore such an algorithm
would not be idempotent anyway – it would be still necessary to repeat the
algorithm until the fixpoint is found.

2. In practice most of the time the edge finding algorithm runs without changing
any bound. For benchmarks in section 5, the algorithm changes some esti

only in circa 30% of cases. Therefore it pays off to tune the algorithm for
the case where it does not propagate. Probability of two updates in two
consecutive runs is only 30%× 30% = 9%. Maybe we can save some of these
9% of runs, but it could slow down of the remaining 91% of runs.

3. For future research, it may be interesting to look for an algorithm with
output-sensitive time complexity such as O(n2 + ln) where l is the number
of changes done.

4. This is not the first propagation algorithm which using this “lazy” approach,
see for example the not-first/not-last algorithm in [10].

240 P. Viĺım

2.6 Symmetry

Algorithm 2 updates values esti. An algorithm to update lcti is symmetrical.
The symmetry is to consider time going backwards. It is possible to use the
algorithm for esti to do updates also on lcti, the idea is to feed the algorithm
with symmetrical data about activities:

inputEsti = − lcti inputLcti = − esti

The resulting bounds have to be also interpreted symmetrically.

3 Improvements

This section describes further improvements of algorithms 1 and 2 by incorpo-
rating some ideas from energetic reasoning and not-first/not-last.

3.1 Improved Time Bound Adjustments

As explained before, esti can be updated if scheduling i at current esti would
cause overload in some interval [estΩ, lctΩ]. In this case there are some activities
which must be finished in [estΩ , lctΩ] before i can start. In particular, at least one
of these activities must end before i can start. So the new esti must be bigger
than minimum estj + pj over all activities j which contributes to reserve(Ω).
This new lower bound for esti can be sometimes better than the one computed
by the Algorithm 2. This idea is similar to the not-first propagation rule [7].

Note that the activity which ends before i in [estΩ, lctΩ] does not have to be
from set Ω. It could be also one of the activities which contributes to timetable
in [estΩ , lctΩ]. Furthermore, in the following section we will consider even more
activities in the computation of reserve(Ω).

As activities j come from different sources, computation of minimum estj + pj

can slow down the algorithm. Simpler but less accurate alternative is to precom-
pute for each activity a minimum estj + pj over all j ∈ T such that esta <
estj + pj . Then each time we compute est′i we can use this precomputed value
(for current a) as another lower bound. This approach is used for experimental
results reported at the end of this paper.

estΩ = 0 lctΩ = 10

lcti = 11esti = 1 eEF
i = 3

0 2 4 6 8 10

eTT
i = 4

pEF
i = 3pTT

i = 4

Fig. 7. An example for better counting of energy consumption in [estΩ , lctΩ]

Timetable Edge Finding Filtering Algorithm 241

Algorithm 3. Improved Overload Checking

1 ��� b ∈ T EF �� ����	
2 eEF := 0 ;
3 ��� a ∈ T EF in non-increasing order by esta �� ����	
4 �� lcta ≤ lctb
��	

5 eEF := eEF + eEF
a ;

6 �
��

7 eEF := eEF + ca max (0, lctb − (lcta −pEF
a)) ;

8 �� C(lctb − esta) < eEF + ttAfterEst[a] − ttAfterLct[b]
��	
9 ���
 ;

10 �	� ;
11 �	� ;

3.2 Improved Computation of Energy Consumption

Let us consider an example from Figure 7. What we see there is set Ω with
estΩ = 0, lctΩ = 10 and activity i �∈ Ω with esti = 1, lcti = 11, pi = 7 and ci = 1.
Activity i has both fixed and free parts: pTT

i = 4, eTT
i = 4, pEF

i = 3, eEF
i = 3.

Timetable edge finding knows from timetable that at least eTT
i = 4 energy units

of i must be executed during [estΩ, lctΩ]. However as we can see in Figure 7
there are at least 6 energy units of i which must be executed during [estΩ, lctΩ].
So in this example timetable edge finding does better energy computation than
standard edge finding (4 energy units versus 0) however it is still less accurate
than energetic reasoning (6 energy units). In this section we show how to improve
energy computation in timetable edge finding to get also 6 energy units. It is a
step towards energetic reasoning, however only in limited cases.

Let’s generalize the situation from Figure 7. If i is in Right or Inside
position with Ω then we can further increase energy consumption in [estΩ, lctΩ]
by:

sureIn(Ω, i) = ci max (0, lctΩ − (lcti − pEF
i))

Algorithm 3 shows how to take sureIn(Ω, i) into account in the overload checking
algorithm. When activity a is not added into Ω then it is in Inside or Right
position with all future sets Ω with lctΩ = lctb. As sureIn(Ω, i) does not depend
on estΩ we can add sureIn(Ω, a) to variable eEF (line 7).

Improved energy consumption can be also taken into account in Algorithm 2.
We do not present the modified algorithm in this paper. The general idea is
to first store improved values eEF for all pairs of activities a and b in a two
dimensional array. Then we can use this array in the update algorithm instead
of eEF variable (be careful about duplicates in esta and lctb). To avoid count-
ing energy sureIn(Ω, i) twice for positions Inside and Right, it is necessary to
decrease add(estΩ, lctΩ, i) by sureIn(Ω, i) (lines 10 and 13) and also increase
mandatoryIn(esta, lctb, ι) by sureIn(Ω, i) at line 14.

242 P. Viĺım

4 Comparison with Standard and Extended Edge Finding

This section compares propagation power of timetable edge finding (without im-
provements from Section 3) with standard and extended edge finding algorithms.

Standard and extended edge finding propagation rules have two parts. First
part considers a set Ω ⊂ T and an activity i ∈ T \Ω. If one of the following two
conditions holds:

edge finding (EF):

C
(
lctΩ − estΩ∪{i}

)
< eΩ + ei

extended edge finding (EEF):
esti < estΩ < esti + pi &

C (lctΩ − estΩ) < eΩ + ci (esti + pi − estΩ)

then i must end after lctΩ (i.e. esti + pi > lctΩ) otherwise there is no solution.
However both algorithms search for a better update of esti. In particular they
enumerate all subsets Ω′ of Ω to find the best possible update:

esti := max

⎛
⎜⎝esti, max

Ω′⊆Ω
rest(Ω′,ci)>0

estΩ′ +
⌈

rest (Ω′, ci)
ci

⌉⎞⎟⎠ (UPD)

where rest (Ω′, ci) = eΩ′ − (C − ci) (lctΩ′ − estΩ′)
To compare the filtering power of the rules above with timetable edge finding

it is best to concentrate on fixpoints1. In the following we prove that when
timetable edge finding reaches a fixpoint then neither standard nor extended
edge finding can propagate anything. We begin by the following lemma:

Lemma 1. If (EF) or (EEF) holds and timetable edge finding reached a fixpoint
(i.e. it cannot propagate any more) then esti + pi > lctΩ.

Proof. By contradiction: we will assume that esti + pi ≤ lctΩ. There are 3 cases:

1. (EEF) holds. In this case esti < estΩ < esti + pi ≤ lctΩ. Let us consider
total energy used by i and Ω in interval [estΩ, lctΩ] if i is scheduled on esti.
Without timetable we can estimate it as:

eΩ + ci(esti + pi − estΩ)

With timetable we can make a better estimation:

eEF
Ω + ttAfterEst(Ω) − ttAfterLct(Ω) + add(estΩ, lctΩ, i)

Computation with timetable is more precise therefore:

eΩ + ci(esti + pi − estΩ) ≤
≤ eEF

Ω + ttAfterEst(Ω) − ttAfterLct(Ω) + add(estΩ, lctΩ, i)
1 Note that rules (EF) and (EEF) together are monotonic, therefore by Domain Re-

duction Theorem [2] their repetitive application (in arbitrary order) leads to a unique
fixpoint. Similarly, propagation rule behind timetable edge finding algorithm (with-
out improvements from Section 3) is also monotonic, therefore its repetitive appli-
cation also leads to a unique fixpoint.

Timetable Edge Finding Filtering Algorithm 243

This together with (EEF) results in reserve(Ω) < add(estΩ, lctΩ, i). That
contradicts the assumption that timetable edge finding cannot propagate.

2. (EF) holds and esti ≥ estΩ. In this case if i is scheduled on esti then its
energy contribution to [estΩ, lctΩ] is ei (remember that we are assuming for
contradiction that esti + pi ≤ lctΩ). Again, this contribution is counted in
timetable and in add(estΩ, lctΩ, i). Therefore:

ei ≤ add(estΩ, lctΩ, i) + ttAfterEst(Ω) − ttAfterLct(Ω)

Together with (EF) it gives the contradiction reserve(Ω) < add(estΩ, lctΩ, i).
3. (EF) holds and esti < estΩ. Then condition (EF) can be rewritten as:

C (lctΩ − esti) < eΩ + ei because esti < estΩ

C (lctΩ − estΩ) < eΩ + ei −C (estΩ − esti)
C (lctΩ − estΩ) < eΩ + ei − ci (estΩ − esti) because C > ci

C (lctΩ − estΩ) < eΩ + ci (esti + pi − estΩ) because ei = ci pi

When i is scheduled on esti then its energy contribution to [estΩ, lctΩ]
is ci (esti + pi − estΩ). Together with the inequality above it means that
timetable edge finding propagates what is a contradiction. ��

Proposition 1. When timetable edge finding reaches a fixpoint then both stan-
dard and extended edge finding cannot propagate anything.

Proof. By contradiction: we will assume that timetable edge finding reached a
fixpoint, i.e. there is no potential overload, however standard or extended edge
finding can propagate, i.e. there is i, Ω and Ω′, Ω′ ⊆ Ω, such that (EF) or (EEF)
holds and (UPD) improves esti using Ω′.

We are going to prove (for the contradiction) that timetable edge finding
propagates for Ω′ and i. By Lemma 1 we know that lctΩ < esti + pi. And
because Ω′ is a subset of Ω we conclude lctΩ′ ≤ lctΩ < esti + pi. We distinguish
two cases:

1. esti ≤ estΩ′ . In this case when i is scheduled on esti then its energy con-
tribution to [estΩ′ , lctΩ′] is ci (lctΩ′ − estΩ′). However because Ω′ is used by
(UPD) to improve esti it must hold:

0 < rest(Ω′, ci)
0 < eΩ′ − (C − ci) (lctΩ′ − estΩ′)

C (lctΩ′ − estΩ′) < eΩ′ + ci (lctΩ′ − estΩ′)

Therefore timetable edge finding propagates what is a contradiction.

2. esti > estΩ′ . In this case if i is scheduled on esti then its energy contribution
to [estΩ′ , lctΩ′] is ci (lctΩ′ − esti). However because (UPD) improves esti:

244 P. Viĺım

esti < estΩ′ +
⌈

rest(Ω′, ci)
ci

⌉

esti < estΩ′ +
⌈

eΩ′ − (C − ci) (lctΩ′ − estΩ′)
ci

⌉

0 <

⌈
ci(estΩ′ − esti) + eΩ′ − (C − ci) (lctΩ′ − estΩ′)

ci

⌉

0 < ci(estΩ′ − esti) + eΩ′ − (C − ci) (lctΩ′ − estΩ′)
C (lctΩ′ − estΩ′) < eΩ′ + ci (lctΩ′ − esti)

Therefore timetable edge finding propagates what is a contradiction. ��

5 Experimental Results

The presented algorithm (including the improvements described in Section 3)
was tested on 438 open instances of the RCPSP problem from PSPLIB [1]. The
RCPSP problem is to find the shortest possible schedule for a set of activities
while fulfilling precedence constraints and cumulative resource constraints. For
the open instances the minimum possible length l of the schedule is still not
known, but PSPLIB keeps track of the best published lower and upper bounds
(LB and UB such that LB ≤ l ≤ UB), including recent results of Schutt et al.
[8, 9]. PSPLIB does not contain results of Laborie [4], however these are with a
single exception (lower bound 83 for instance j90 25 5) overcome by results of
Schutt et al.

We improved current best known lower bounds using destructive lower bounds:
first we try to find a solution with length equal to the current best known LB.
We used simple SetTimes search as recapped in [3] and after each decision we
propagate all constraints to fixpoint (using timetable edge finding for cumu-
lative resources). If there is no solution then we continue by trying to find a
solution with length LB + 1. If that also fails then we try LB+ 2 and so on. The
time limit for each improvement step is 60 seconds. Experiments were done on
Intel(R) Core(TM)2 Duo CPU T9400 on 2.53GHz.

Table 2 summarizes the results. Open instances are split into 3 groups by
size. For each group there is the number of open instances in the group, num-
ber of instances with LB improved by one (column LB+1), by two etc. For 9
instances we were able to improve LB without starting SetTimes search, that is,

Table 2. Experimental results

Size # Instances LB+1 LB+2 LB+3 LB+4

60 49 5 3 - -
90 78 24 10 - -
120 311 82 32 9 4

Timetable Edge Finding Filtering Algorithm 245

propagation itself found the problem infeasible. Detailed results can be found at
http://vilim.eu/petr/cpaior2011-results.txt.

Acknowledgment. I would like to thank Philippe Laborie and Jerôme Rogerie
for their help with the algorithm and with this paper. I also thank to anonymous
referees for providing very useful feedback.

References

[1] Project scheduling problem library, http://webserver.wi.tum.de/psplib
[2] Apt, K.R.: The essence of constraint propagation. Theoretical Computer Sci-

ence 221(1-2), 179–210 (1999)
[3] Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for

cumulative scheduling. In: Proceedings of the Fifteenth International Conference
on Automated Planning and Scheduling (ICAPS 2005), pp. 81–89. AAAI, Menlo
Park (2005)

[4] Laborie, P.: Complete MCS-based search: Application to resource constrained
project scheduling. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI, pp. 181–186.
Professional Book Center (2005)

[5] Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. Informs
Journal of Computing 20, 143–153 (2008)

[6] Pape, C.L., Baptiste, P., Nuijten, W.: Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer Academic Publishers,
Dordrecht (2001)

[7] Schutt, A., Wolf, A., Schrader, G.: Not-first and not-last detection for cumulative
scheduling in O(n3 log n). In: 16th International Conference on Applications of
Declarative Programming and Knowledge Management, INAP 2005, pp. 66–80.
Springer, Heidelberg (2005)

[8] Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposi-
tion is not as bad as it sounds. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp.
746–761. Springer, Heidelberg (2009)

[9] Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Explaining the cumulative prop-
agator. Constraints, 1–33–33 (2010), doi:10.1007/s10601-010-9103-2, ISSN 1383-
7133

[10] Torres, P., Lopez, P.: On not-first/not-last conditions in disjunctive scheduling.
European Journal of Operational Research 127(2), 332–343 (1999)

[11] Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in
O(kn log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009)

Identifying Patterns in Sequences of Variables

Alessandro Zanarini1 and Pascal Van Hentenryck2

1 Dynadec Europe, Louvain La Neuve, Belgium
alessandro.zanarini@dynadec.com

2 Brown University, Box 1910, Providence, RI 02912
pvh@cs.brown.edu

Abstract. Complex rostering problems often require to recognize and
count some patterns in the employees’ schedules. The number of occur-
rences of such patterns is then constrained to comply union rules, busi-
ness requirements, and other workflow constraints. A common approach
to deal with these constraints is to model them as cost-regular con-
straints but the resulting automata are not trivial to encode manually.
This paper proposes a new constraint, the pattern constraint, whose
goal is to recognize sets of patterns and constrains their occurrences.
The pattern constraint is implemented in two different ways, relying re-
spectively on a modified version of the regular constraint and on the
cost-regular constraint. Both approaches employ an algorithm that
automatically encodes the underlying automaton. As a result, the pat-
tern constraint provides a high-level modeling abstraction, removing the
burden of encoding automata for pattern recognition and allowing to
automate the creation of complex models for rostering problems.

1 Introduction

Rostering problems often present complex constraints on the employees’ sched-
ules derived from union rules, business processes, and other work-flow rules [1]
[8]. Typical constraints include: “No day shift after two consecutive night shifts”
or “After four working shifts, there must be a day off at least three times in a
month”. Such constraints require the ability to recognize in the schedule some
sequence of shifts (or patterns) and to constrain their occurrences. In the liter-
ature (e.g., [7]), these constraints have been modelled with the cost-regular
constraint, where the automaton encodes the pattern recognition logic and the
cost variable represents the number of pattern occurrences identified. Despite
promising results, this approach has the major drawback of requiring a manual
encoding of the automaton for each pattern. This task is time-consuming, error-
prone, and induces manual intervention for each new problem/constraint. The
study in [6] addresses this issue proposing a 6-stage algorithm using automaton
operations including concatenation and minimization.

This paper proposes a simpler approach, which exploits a well-known pattern-
matching algorithm [2] and reduces the algorithmic complexity compared to [6].
Our approach is embedded in a new constraint – called pattern – with two
alternative implementations based respectively on the cost-regular constraint
[4] and on a variation of the regular constraint [9].

T. Achterberg and J.C. Beck (Eds.): CPAIOR 2011, LNCS 6697, pp. 246–251, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Identifying Patterns in Sequences of Variables 247

2 Background

This section briefly presents finite state machines and the pattern-matching al-
gorithm of Aho and Corasick in 1975. The presentation substantially differs from
[2] to ease reading and bridge the gap with Constraint Programming.

A finite state machine1 is formally defined as 6-tuple (Q, q0, Σ, Ω, δ, τ) con-
sisting of: a set of states Q; an initial state q0 ∈ Q; a finite set of input symbols Σ;
a finite set of output symbols Ω; a transition function δ : Q×Σ → Q that maps
a state and an input symbol to a corresponding next state; and an output func-
tion τ : Q × Σ → Ω that maps a state and an input symbol to a corresponding
output state.

The pattern-matching algorithm proposed by Aho-Corasick employs a finite
state machine that receives as input the string to match against the set of pat-
terns and it outputs the identifiers of the patterns recognized if any. For space
reasons, we only illustrate the algorithm through an example. A formal descrip-
tion of the algorithm can be found in [2]. The algorithm consists of two main
phases. The first phase unfolds the patterns in consecutive connected states,
while the second phase connects different paths of the finite state machines us-
ing suffixes as a guide. In the following, the state labels represent the last symbols
encountered by the finite state machine. For example, state s = [1, 1, 3] indicates
that the last three input symbols have been respectively 1, 1, and 3.

Consider the three patterns: p1 = [1, 2], p2 = [1, 3] and p3 = [1, 2, 1]. In the
first phase, each pattern is unfolded in separate states starting from the initial
state []. Pattern p1 starts from state [], then proceeds with value 1 to state [1],
and then with value 2 to [1, 2]. Pattern p3 shares the same states as p1 but adds
an additional transition from [1, 2] to [1, 2, 1] with value 1. Figure 1(a) shows the
automaton built after executing the first phase.

The second phase considers how to extend each state s by concatenating
it with each possible domain value v. Let s′ be the state resulting from the
concatenation: The algorithm searches the longest suffix of the s′ label that
represents a valid state. A transition is then inserted from s to the appropriate
s′ suffix with the value v. If no such state is found, a transition from state s to
the initial state [] is inserted.

Figure 1(b) shows the resulting state machine with the transitions going back
to the initial state omitted. Consider the state [1, 2, 1] when an additional value
3 is concatenated to it: The resulting string is [1, 2, 1, 3]. Among all the suffixes
[1, 2, 1, 3], [2, 1, 3], [1, 3], [3] and [], [1, 3] is the longest one and a transition starting
from [1, 2, 1] with value 3 and ending to [1, 3] is added to the finite state machine.

The output function is created from the set of patterns and the set of tran-
sitions created in the previous step. For each transition, the algorithm checks
whether any suffix of any length of the destination state represents a possible
pattern to recognize. If that is the case then it outputs the identifier of the iden-
tified pattern. If no pattern is recognized, then the output is empty. In the
general case, the created automaton is not minimal. Figure 1(b) shows the

1 We consider the Mealy machine model in this paper.

248 A. Zanarini and P. Van Hentenryck

Fig. 1. (a) The automaton after the first phase of the transition creation. The arc
labels represents the input symbols of the corresponding transitions. (b) The finite
state machine for pattern recognition. The arc labels represents respectively the input
symbol and the output symbol of the corresponding transitions.

output function as the second argument of the arc labels. Consider the input
string [3, 1, 2, 1, 3], after the first symbol the finite state machine is still in the
initial state [] with a null ouput; the second input symbol 1 triggers a transition
that ends up in state [1]. Afterwards, the symbol 2 brings the state machine to
the state [1, 2] with corresponding output p1. The following 1 brings the state
machine to state [1, 2, 1] and it outputs p3. Finally, the last symbol 3 triggers
the transition to state [1, 3] with output p2.

The Aho-Corasick algorithm creates the finite state machine in linear time
with respect to the sum of the lengths of the patterns to be identified.

3 Pattern Constraint

Definition 1 (The pattern Constraint). Let pi be a pattern defined as a
sequence of values pi = (v1, . . . , vk), P a set of patterns, x = (x1, . . . , xn) a
sequence of finite domain variables, and z be a finite domain variable representing
the number of occurrences of any pattern pi ∈ P in x. The pattern constraint
holds iff the sum of the number of occurrences of each pi ∈ P in the sequence x
is equal to z.

The pattern constraint is a specialization of the cardinality-path constraint
[3]. In the following, we introduce two possible alternatives to implement the
pattern constraint.

The Cost-Regular Implementation. The first possibility is to employ the
cost-regular constraint [4], where the automaton would be extracted from
the finite state machine built by the Aho-Corasick algorithm. This is similar to
the approach of Métivier et al. in [7] except that we employ the Aho-Corasick
algorithm to derive the automaton automatically. The costs on the automaton
arcs are defined as follows: if the corresponding arc in the finite state machine
has an empty output, then the arc cost is equal to 0; otherwise its cost is 1.2

2 In the most general case, a transition may trigger more than one output symbol; in
this case the cost would be the number of output symbols.

Identifying Patterns in Sequences of Variables 249

Therefore, the total cost of the constraint represents the number of occurrences
of the patterns. This solution allows to exploit the cost-based filtering of the
cost-regular and to propagate back to the variables x any change of the bounds
of z. Nonetheless, it does not achieve domain consistency as the cost-regular
constraint only performs bound consistency on z. The time complexity is O(ndQ)
where n is the number of variables, d is the cardinality of the input alphabet,
and Q is the number of automaton states which is bounded from above by the
sum of the length of the patterns to recognize. As a comparison, the complexity
of the cardinality-path is O(n2dk + n3d) where k is the length of the longest
pattern to recognize.

The Finite-State-Machine Implementation. The finite-state-machine
constraint (in the following FSM constraint) is a slight modification of the regular
constraint; it shares with the latter the automaton abstraction but it has some
differences: all the states are considered finals and it constrains two sequences
of variables (the input and output strings).

Definition 2 (Finite State Machine Constraint).
Let FSM = (Q, q0, Σ, Ω, δ, τ) be a finite state machine, (x1, . . . , xn) a sequence
of input variables with domains Dxi ∈ Σ and (y1, . . . , yn) a sequence of output
variables with domains Dyi ∈ Ω. The finite state machine constraint holds iff for
each input symbol the corresponding output symbol is consistent with FSM, i.e.
given qi−1 the state reached by the FSM after processing i − 1 input symbols,
than δ is defined for (qi−1, xi) and τ(qi−1, xi) = yi.

To simplify understanding, we only represent the output variables as finite in-
teger variables although, in the most general case, they may be set variables. A
possible decomposition of the fsm constraint follows closely the one proposed by
Quimper and Walsh in [10]:

qi = δ(qi−1, xi) (1)
yi = τ(qi−1, xi) (2)

The pattern constraint can then be modelled as a fsm constraint where the
finite state machine is generated by the Aho-Corasick algorithm; then with a
global-cardinality-constraint (in the following gcc constraint) defined on
the y variables that forces the appropriate pattern occurrences.

Theorem 1. The pattern constraint based on the fsm constraint does not dom-
inate in term of pruning the one based on the cost-regular constraint.

Proof. Consider a constraint with x = (x1, . . . , x4) with domains D1 = 1 and
D2 = D3 = D4 = {1, 2}, a pattern p1 = [1, 2] that must appear exactly twice
in x. The only feasible solution is x = (1, 2, 1, 2). Since the propagation of the x
variables is equivalent in the cost-regular and fsm constraints, we only analyze
the back-propagation respectively from the cost variable and from the output
variables to the x.

250 A. Zanarini and P. Van Hentenryck

Thanks to cost-based filtering the cost-regular is able to detect that x2 = 1
is not feasible as its related shortest and longest path to a sink node in the lay-
ered graph is respectively equal to 0 and 1. Since the cost is bounded to be equal
to 2 then the value 1 is removed from variable x2. With similar arguments, the
constraint is able to detect also that x3 must be equal to 1 and x4 equal to 2.

In case of the decomposition based on the fsm and gcc constraints, the variable
y1 is equal to 0, whereas y2, y3 and y4 are free to take values 0 or 1. The gcc
forces two y variables out of the four to be equal to 1 but it cannot perform any
filtering on y2, y3 and y4. Similarly, the fsm constraint has supports for both
value 0 and 1 for the same variables, therefore it does not detect x2 �= 1.

Despite the weaker propagation, the finite state machine approach can be valu-
able when dealing with some over-constrained rostering applications. In these
cases, pattern constraints are soft and may have different violation costs. In
general, intersecting different finite state machines entailing different pattern
constraints on the same variables is typically useful to increase the propagation
(despite the fact that the size of the finite state machine may increase expo-
nentially). Suppose that a problem requires to detect patterns p1 and p2 with
a violation cost on the number of occurrences of respectively c1 and c2 on the
same set of variables; one solution would be to have two separated pattern
constraints and consider them independently. An alternative approach would be
to intersect the two finite state machines and have a single pattern constraint
counting the occurrences of both p1 and p2. The pattern constraint based on
fsm would allow to extract the occurrences of each individual pattern and possi-
bly apply different violation costs. In contrast, the pattern constraint based on
cost-regular counts indistinguishably p1 and p2 occurrences, therefore differ-
ent violation costs cannot be applied; multicost-regular [5] can be employed
however to overcome this limitation as suggested in [6].

4 Conclusions

We introduced a new constraint - the pattern - that, along with the Aho-
Corasick algorithm, is an important step towards an automated modelling of
rostering problems. The burden of manually encoding the automata for pattern-
matching is no more on the final user. Future researches should look into the
intersection of several pattern constraints on the same set of variables and on
handling wildcards.

References

1. Patat 2010 - Nurse Rostering Competition, http://www.kuleuven-kortrijk.be/
nrpcompetition (Online; accessed March 11, 2011)

2. Aho, A.V., Corasick, M.J.: Efficient String Matching: an Aid to Bibliographic
Search. Communication of ACM 18, 333–340 (1975)

Identifying Patterns in Sequences of Variables 251

3. Beldiceanu, N., Carlsson, M.: Revisiting the Cardinality Operator and Introducing
the Cardinality − Path Constraint Family. In: Codognet, P. (ed.) ICLP 2001.
LNCS, vol. 2237, pp. 59–73. Springer, Heidelberg (2001)

4. Demassey, S., Pesant, G., Rousseau, L.-M.: A Cost-Regular Based Hybrid Column
Generation Approach. Constraints 11(4), 315–333 (2006)

5. Menana, J., Demassey, S.: Sequencing and Counting with the multicost-regular
Constraint. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS,
vol. 5547, pp. 178–192. Springer, Heidelberg (2009)

6. Menana, J., Demassey, S., Jussien, N.: Modélisation et Optimisation des
Préférences en Planification de Personnel. Research report 10-01-INFO, École des
Mines de Nantes (2010)

7. Métivier, J.-P., Boizumault, P., Loudni, S.: Solving nurse rostering problems using
soft global constraints. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 73–87.
Springer, Heidelberg (2009)

8. University of Nottingham. Staff Rostering Benchmark, http://www.cs.nott.ac.
uk/~tec/NRP/ (Online; accessed March 11, 2011)

9. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of
Variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

10. Quimper, C.-G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

Author Index

Aschinger, Markus 4

Belotti, Pietro 154
Benini, Luca 137
Bent, Russell 59
Bergman, David 20
Bessiere, Christian 36
Bonfietti, Alessio 137
Boutilier, Craig 1

Chapados, Nicolas 53
Coffrin, Carleton 59

Dilkina, Bistra 76
Drescher, Conrad 4

Edis, Emrah B. 92

Friedrich, Gerhard 4

Gent, Ian P. 2
Gomes, Carla P. 76
Gottlob, Georg 4

Haouari, Mohamed 117
Hooker, John N. 20

Januschowski, Tim 99
Jeavons, Peter 4
Joliveau, Marc 53

Lahimer, Asma 117
Lai, Katherine J. 76
Lee, Jon 154
Linderoth, Jeff 154
Lodi, Andrea 3, 131

Lombardi, Michele 137
Lopez, Pierre 117

Margot, François 154
Milano, Michela 137

Nannicini, Giacomo 154
Narodytska, Nina 36

Oguz, Ceyda 92
O’Sullivan, Barry 196

Pesant, Gilles 131, 170
Petit, Thierry 190
Pfetsch, Marc E. 99
Poland, Jan 210

Quimper, Claude-Guy 36

Régin, Jean-Charles 176, 190
Rousseau, Louis-Martin 53, 131
Ryabokon, Anna 4

Simonis, Helmut 196
Sivanthi, Thanikesavan 210
Subramani, K. 215

Thorstensen, Evgenij 4

Van Hentenryck, Pascal 59, 246
van Hoeve, Willem-Jan 20
Viĺım, Petr 230

Wächter, Andreas 154
Walsh, Toby 36
Worthington, James 215

Zanarini, Alessandro 170, 246

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

