
JOHN W. CHINNECK
S Y S T E M S A N D C O M P U T E R E N G I N E E R I N G

C A R L E T O N U N I V E R S I T Y

O T T A W A , C A N A D A

Search in Mixed-Integer Linear
Programming

B R A N C H A N D B O U N D B A S I C S

W H A T I S M I X E D - I N T E G E R P R O G R A M M I N G (M I P) ?

B R A N C H A N D B O U N D F O R M I P

O B S E R V A T I O N S

I. Fundamentals
2

Chinneck: Search in MIP

Branch and Bound Basics

 Application: searching a discrete space

 Node: represents subsets of possible solutions.

 Branch: generate child nodes from current node.

3

Chinneck: Search in MIP

Root node

Leaf nodes

AH Land, A Doig (1960).
An Automatic Method of
Solving Discrete
Programming Problems,
Econometrica 28.

The Bounding Function

Chinneck: Search in MIP

4

 Bound: optimistic bound on the best possible solution at
descendent of current node.

 As accurate as possible, but...
 Underestimate for minimization; Overestimate for maximization

 Incumbent: best complete feasible solution yet found.
Updated as solution proceeds.

 Prune: remove node under certain conditions
 Descendent cannot be optimum: bounding function value worse

than incumbent objective function value.
 Node and descendents cannot be feasible: decisions thus far

prevent one or more constraints from ever being satisfied.

 Stop: when incumbent objective function value is better
than (or equal to) the best bound on any node.

 Optimistic bounding function guarantees optimality.
 “Better than or equal to” finds alternative optima

What is Mixed-Integer Programming?

Chinneck: Search in MIP

5

 Linear objective function (Z) and constraints

 Variables: continuous / integer / binary
 At least one integer or binary variable

 Hereafter: “integer” includes “binary”

 MILP (or MIP) includes:
 Mixed problems (at least one continuous variable)

 Pure integer problems

 Pure binary problems

 Integer variables make it a discrete search problem

 Goal: best solution that also satisfies all integrality
conditions

Branch and Bound for MIP

Chinneck: Search in MIP

6

 Bounding function at a node:
 linear program (LP) solution ignoring integer restrictions.

 Called the LP-relaxation.

 Integer-feasible solution:
 All integer variables have integer values.

 Leaf nodes are either:
 Integer-feasible (no descendent will be better)

 Infeasible (and no descendent will be feasible)

 Intermediate node:
 solution satisfies all linear constraints and bounds (original or

added), but not all integrality constraints.

Designing a MIP B&B Algorithm

Chinneck: Search in MIP

7

3 major search rule design decisions:
 Branching variable selection
 Branching direction selection
 Node selection: which node to explore next?

Numerous other heuristics:
 Local search
 Root node heuristics
 Etc.

MIP: B&B framework (guarantees optimum), plus
numerous heuristics

Branching Variable and Direction Selection

Chinneck: Search in MIP

8

 Candidate variable: integer variable having non-
integer value in current LP relaxation solution.

 E.g. x3 =5.7 in LP solution. Branching on x3 creates
two child nodes:

 Down branch: parent LP + revised bound x3 ≤ 5

 Up branch: parent LP + revised bound x3 ≥ 6

 Search design issues:

 How to choose the branching variable?

 How to choose the branching direction (up or down)?

 The other child node may be visited later...

Branching on a Variable

Chinneck: Search in MIP

9

 LP at parent node Branch on x1:

 two child node LPs

 x1 integer in child solns

Z(3.75, 2.25) = 41.25
x1 ≥ 4

x1 ≤ 3

Down
child

Up child

x1

x2

Node Selection

Chinneck: Search in MIP

10

 Search issue: which node to explore next?

 Depth-first:

 Choose next node from among last nodes created

 Common choice for MIP

 Big advantage:

 Next LP identical to last one solved, except for one bound

 Next solution very quick due to advanced LP start

 Many other options (more later...)

Simple Example

Chinneck: Search in MIP

11

Maximize Z = 8x1 + 5x2

s.t. x1 + x2 6

9x1 + 5x2 45

x1, x2 are integer and nonnegative

 Search rules:

 Node selection: depth first. Simple backtrack at leaf.

 Branching variable selection: natural order.

 Branching direction: down.

1. Root Node

Chinneck: Search in MIP

12

 Root node LP solution: Z(3.75, 2.25)=41.25

 Both variables are candidates: choose x1, branch down.

Z(3.75,2.25) = 41.25

2. Add Bound: x1 ≤ 3

Chinneck: Search in MIP

13

 Integer-feasible!

 First incumbent:
Z(3,3)=39

 Still active nodes with
bound > incumbent so
continue.

 Next: backtrack and
branch on x1, up.

Z(3,3) = 39

added bound x1 ≤ 3
1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Add bound: x1 ≥ 4

Chinneck: Search in MIP

14

 Not integer-feasible,
bound > incumbent.

 Still active nodes with
bound > incumbent so
continue.

 Next: continue depth-
first, branch on x2, down.

Z(4,1.8)=41

added bound x1≥4

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Branch Down on x2

Chinneck: Search in MIP

15

 Not integer-feasible, bound
> incumbent.

 Still active nodes with
bound > incumbent so
continue.

 Next: continue depth-first,
branch on x1,down

Z(4.444,1)=40.555

added bound x2≤1

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Branch Down on x1

Chinneck: Search in MIP

16

 Integer-feasible, but worse
than incumbent: prune.

 Still active nodes with bound
> incumbent so continue.

 Next: backtrack, branch on x1,
up.

Z(4,1)=37

added bound x1≤4
Note: x1≥4 added
previously

feasible

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4

6. Backtrack, add x1≥5

Chinneck: Search in MIP

17

 Feasible, replaces incumbent. Still active nodes with bound
> incumbent so continue.

 Next: backtrack, branch on x2,
up.

Z(5,0)=40

single
feasible
point

added bound x1≥5

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4

6. Z(5,0)=40

add x1≥5

7. Backtrack, Add x2≥2

Chinneck: Search in MIP

18

 Infeasible! Nowhere to backtrack:
exit.

 Solution: Z(5,0)=40.

added bound x2≥2

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4

6. Z(5,0)=40

add x1≥5

7. Infeasible

add x2≥2

General B&B Algorithm for MIP

Chinneck: Search in MIP

19

N: list of unexplored nodes, initially empty. No incumbent at start.
1. Solve root node LP relaxation. Add it to N.
2. Choose node from N for exploration.
3. Solve LP relaxation for current node.

 If LP solution infeasible: go to Step 7.
 If LP solution is integer-feasible:

 Worse than incumbent, then go to Step 7.
 Better than incumbent, replace it, go to Step 7.

4. Choose candidate variable in current node for exploration.
5. Create two child nodes using branching variable, add to N.
6. Go to Step 2.
7. If N is empty then:

1. If no incumbent, exit with infeasible outcome.
2. Else exit with incumbent as optimum solution.

8. Go to Step 2.

Observations: Squaring-off

Chinneck: Search in MIP

20

 Adding bounds “squares
off” the feasible region

 Objective function
eventually “catches” on a
squared-off cornerpoint

 Number of candidates
generally decreases
deeper in tree

Depth and Bounding Function Value

Chinneck: Search in MIP

21

 Bounding function
values get worse (or stay
the same) as you descend

 Each new level removes
part of parent feasible
region:
 LP relaxation solution can

only get worse (or stay the
same)

 Solution stalls when
bounds do not change
much between levels

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4

6. Z(5,0)=40

add x1≥5

7. Infeasible

add x2≥2

Observations

Chinneck: Search in MIP

22

 Any set of tree rules (node selection, branching variable
selection and direction) will solve the MIP correctly.
 Different sets of rules generate different trees
 Some trees are much more efficient!

 Simplex method preferred for LP solutions because of
ease of advanced start in child nodes.

 Some MIPs do not terminate (rare).

 Good early incumbent helps prune the search tree.
 Nodes with worse values of bounding function are removed.

Converging Bounds

Chinneck: Search in MIP

23

 MIP solved when
the upper and lower
bounds converge:
 incumbent objective

function value

 best bounding function
value

 To speed the
process:
 Better incumbents

early

 Tighter bounding
function values

Incumbent
objective function
value

Best bounding
function value

Nodes explored

Converging bounds when minimizing

Measuring Solution Speed

Chinneck: Search in MIP

24

 Total solution time: the gold standard.

 Total simplex iterations
 Approximates total time

 Ignores non-LP time (e.g. choosing node, variable, etc.)

 Useful if running on heterogeneous machines

 Total number of nodes
 May not correlate with time at all

 E.g. Depth-first search may have many more nodes but take much
less time due to simplex advanced starts.

 Example: pk1
 Depth-first: 4058 s; 9,778,734 iterations; 1,965,503 nodes

 Best-projection: 12,623 s; 4,329,434 iterations; 820,924 nodes

N O D E S E L E C T I O N

B R A N C H I N G V A R I A B L E S E L E C T I O N

B R A N C H I N G D I R E C T I O N S E L E C T I O N

O T H E R C O N C E P T S

Chinneck: Search in MIP

25

State of the Art

Node Selection

Chinneck: Search in MIP

26

 General goal (unrealistic): always choose a node
that is an ancestor of an optimum node.

 i.e. Avoid superfluous search

 How much difference does it make?

 Mas76: depth-first 1,307 s, best-projection 20,610 s

 Philosophies:

 Pattern-based: breadth-first, depth-first

 Forecasting: best-first, best-estimate, best-projection

Depth-First Node Selection

Chinneck: Search in MIP

27

 Choose next node from among last nodes created

 Also need rule for branching direction: branch up or down?

 Backtrack at leaf node:

 Choose last created active node.

 Speed advantage for MIP:

 Next LP identical to last one solved, except for one bound

 Next solution very quick due to advanced LP start

 Often finds first incumbent early

Breadth-First Node Selection

Chinneck: Search in MIP

28

 Add nodes to bottom of a list as they are created

 Choose next node from top of list

1

2 3

4 5 6 7 8

9 10

Best-First Node Selection

Chinneck: Search in MIP

29

 Forecasting method, but with limited lookahead
 Just a bound on how well you might do

 Choose unexplored node with best bounding
function value anywhere in tree
 Unexplored nodes initially given bounding function value from

parent node.

 Disadvantage for MIP:
 Frequent re-starts of simplex solution without having the

factorized basis from the parent node.

Best-Projection Node Selection

Chinneck: Search in MIP

30

 Forecasting, with lookahead:

 Project objective function value at a feasible descendent of
current node.

 Assume constant rate of worsening of Z per unit
integer infeasibility at the root node solution.

 For minimization, Zincumbent > Zroot:

 For min: choose node that gives smallest estimate.

i

root

rootincumbent
ii Inf

Inf

ZZ
Zestimate

An Aside: Pseudo-Costs

Chinneck: Search in MIP

31

Estimate effect on Z due to change in value of variable

 Minimizing: Zchild ≥ Zparent , so Z = Zchild
– Zparent

 fj = fractional part of variable, e.g. 0.7 if x =9.7

 Calculate separately for up and down branches on
every integer variable,

 Many different estimating and updating schemes

)1/(

/

j

up

j

up

j

j

down

j

down

j

fZP

fZP

Best-Estimate Node Selection

Chinneck: Search in MIP

32

 Forecasting, with lookahead based on pseudo-costs
 Estimate Z at a feasible descendent of current node using pseudo-

costs for each candidate variable

 For minimization:

j j

up

jj

down

jii fPfPZestimate)1(,min

Other Node Selection Variants

Chinneck: Search in MIP

33

 Most feasible node selection: choose node having
smallest sum of fractional values over all candidate
variables

 Combinations:

 Depth-first to first incumbent, then best-first

 Interleave best-estimate with occasional best-first

 Etc.

Triggering Backtrack or Jumpback

Chinneck: Search in MIP

34

 Assuming depth-first node selection:
backtrack at a leaf (LP-infeasible or integer-feasible)

 Any other reasons to backtrack or jumpback?

 Jumpback: select a node other than the backtrack node

 Trigger using aspiration value:

 User-selected limit on objective function value:

 Bounding function value must be at least this good to explore node

 Backtrack or jumpback if node bound is worse than the
aspiration value

Branching Variable Selection

Chinneck: Search in MIP

35

 How much difference does it make?

 Momentum1: time to first incumbent

 Cplex 9.0 default: time out at 28,800 s. Method B: 75 s.

 Most common idea:

 Choose variable that worsens Z the most in child node

 Gives a tighter bound on descendent nodes

 Some methods choose variable and direction

Simple Variable Selection

Chinneck: Search in MIP

36

 Choose variable that is closest to feasibility

 Choose variable that is farthest from feasibility
(closest to fj = 0.5)

Pseudo-Cost Variable Selection

Chinneck: Search in MIP

37

 Choose variable whose pseudo-cost worsens Z the most
in one of the child nodes:

Maxj{Pj
up×(1-fj), Pj

down×fj}

Alternatively choose variable that has:

 Maximum sum of degradations:
Maxj{Pj

up×(1-fj) + Pj
down×fj}

 Maximum minimum degradation:
Maxj{min(Pj

up×(1-fj), Pj
down×fj)}

 Maximum product of degradations:
Maxj{Pj

up×(1-fj) × Pj
down×fj}

Strong Branching and Variants

Chinneck: Search in MIP

38

 Full strong branching:

 Solve LP for up and down direction for every candidate varb.

 Choose variable and direction that degrade Z the most

 Computationally very expensive!

 Approximations to full strong branching:

 Limit the number of simplex iterations in each LP

 Limit which candidate variables are tested (e.g. based on
pseudo-costs)

Driebeek and Tomlin

Chinneck: Search in MIP

39

1. Approximate strong branching:

 Just one dual simplex pivot for each LP
[can actually just be estimated, not performed]

2. Choose variable that has largest degradation in
either direction

3. Choose direction that gives smallest degradation

 Default branching method in GLPK

Many Variants:

Chinneck: Search in MIP

40

 Hybrid strong/pseudo-cost branching

 Strong branching high in tree

 Pseudo-cost branching below a certain level

 Reliability branching:

 Pseudo-cost branching, except...

 Strong branching on varbs with uninitialized pseudo-costs and
unreliable pseudo-costs

 Etc.

Branching Direction Selection

Chinneck: Search in MIP

41

Common rules:

 Branch up always

 Generally best in practice.

 Branch down always

 Branch to closest bound

 Branch to farthest bound

 Direction that forces branching variable away from
its value at the root node

 Solver-proprietary rules

Other Concepts

Chinneck: Search in MIP

42

 Branch and Cut
 Branch and Price
 Preprocessing and Probing
 Neighbourhood search:

 Limited B&B search in the “neighbourhood” of promising node

 Special Ordered Sets:
 Enforce specified order of variable selection under certain conditions

 Specialized feasibility-seeking algorithms:
 OCTANE for binary problems
 Pivot-and-complement, pivot-and-shift
 The feasibility pump prior to B&B

 No-good learning
 General disjunctions:

 Linear disjunctions that are not axis-parallel

 Parallel processing
 Etc.!

A C T I V E - C O N S T R A I N T V A R I A B L E S E L E C T I O N

N E W N O D E S E L E C T I O N M E T H O D S

B R A N C H I N G T O F O R C E C H A N G E

G E N E R A L D I S J U N C T I O N S

Chinneck: Search in MIP

43

New Directions

Active-Constraint Variable Selection

Chinneck: Search in MIP

44

 Concept:

 LP-relaxation optimum is fixed by active constraints

 For different child optima, must impact the active constraints

 Choose candidate variable that has most impact on active
constraints in current LP-relaxation solution

 Constraint-oriented approach vs. usual objective-
function-oriented approaches

 Focus on reaching first incumbent quickly

Illustration

Chinneck: Search in MIP

45

y

x

LP relaxation
before
branching

Branch on x Branch on y

Feasible
Region

Estimating Impact on Active Constraints

Chinneck: Search in MIP

46

1. Calculate “weight” Wik of each candidate i in each
active constraint k

 0 if the candidate does not appear in constraint

2. For each candidate, total the weights over all of
the active constraints.

3. Choose candidate having largest total weight.

 Dynamic variable ordering: changes at each node

 Many variants: A through P

Overview of Weighting Methods

Chinneck: Search in MIP

47

 Is candidate variable in active constraint or not?

 Relative importance of active constraint:
 Smaller weight if more candidate or integer variables: changes in

other variables can compensate for changes in selected variable.

 Normalize by absolute sum of coefficients.

 Relative importance of candidate variable within active
constraint:
 Greater weight if coefficient size is larger: candidate variable has

more impact.

 Sum weights over all active constraints? Look at biggest
impact on single constraint?

 Etc.

Some of the Better Weighting Schemes

Chinneck: Search in MIP

48

 A: Wik=1.

 B: Wik = 1/ [Σ(|coeff of all variables|].

 L: Wik = 1/(no. integer variables)

 O: Wik = |coeffi|/(no. of integer variables)

 P: Wik = |coeffi|/(no. of candidate variables)

H methods: choose largest individual value of Wik

 HM: Wik = 1/[no. candidate variables]

 HO: Wik = |coeffi|/(no. of integer variables)

 Variants: voting, multiply by dual costs, etc.

Test Models

Chinneck: Search in MIP

49

MIPLIB 2003 set

 60 models (58 used: 2 time out on all methods)

 Range of difficulties

 Rows: 6–159,488

 Variables: 62–204,880

 Integer variables: 1–3,303

 Binary variables: 18–204,880

 Continuous variables: 1–13,321

 Nonzeroes: 312–1,024,059

Experiments

Chinneck: Search in MIP

50

 Cplex 9.0 (baseline): all default settings, except:
 MIP emphasis: find feasible solution

 Experiment 1 (basic B&B): all heuristics off

 Experiment 2: all heuristics turned on

 Active Constraint solver:
 Built on top of Cplex

 Callbacks set branching variable

 Data structures not optimized: inefficient search

 Node selection:

 Experiment 1: Straight depth-first, branch up

 Experiment 2: Cplex default

 Goal: find first integer-feasible solution quickly.

Experiment 1: Heuristics Off

Chinneck: Search in MIP

51

 Method A faster
than Cplex: 43/58
tests (74.1%)

Experiment 1 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (simplex iterations)

fr
a
c
ti

o
n

 o
f

m
o

d
e
ls

Cplex 9.0

A

O

P

HM

HO

Experiment 2: Heuristics On

Chinneck: Search in MIP

52

 25 models used:
 32 solved at root node

 3 failed on all methods

 Method B faster than
Cplex: 14/25 models
(56%)

 Cplex heuristics on:
 Half of models solve

faster than before

 Half of models solve
slower than before

Experiment 2 Iterations Performance Profiles

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ratio to best (iterations)

fr
a
c
ti

o
n

 o
f

m
o

d
e
ls

Cplex 9.0

B

L

P

HM

HO

First Incumbent Better than Cplex

Chinneck: Search in MIP

53

 Optimality Gap measures “distance” of solution from
(unknown) optimum solution

 For minimization:
 Zlow: lowest bound on an active node

 Optimality gap: [|Zlow – Zincumbent|]/[ε+|Zlow|]

 Experimental Results:
 Exp. 1: active constraint methods have smaller gaps than Cplex

(53% for A, 78% for method P)

 Exp. 2: active constraint methods have smaller gaps than Cplex
(75% for B, 50% for HM)

New Node Selection Methods

Chinneck: Search in MIP

54

 Triggering Backtrack
 Feasibility Depth Extrapolation
Modified Best Projection Aspiration

 Choosing Node When Backtracking
Modified Best Projection
Distribution-based Backtracking
 Active Node Search Threshold: Changing Methods

 Goal: optimum solution as quickly as possible

Triggering Backtrack or Jumpback

Chinneck: Search in MIP

55

 Try to trigger when all node
descendents:

 Unlikely to be optimal, or

 Unlikely to be feasible.

 Potential improvement:

 Suppose perfect aspiration

Geometric mean of ratio to best
simplex iterations:

 no asp = 1.49

 perfect = 1.003

Set Aspiration by Estimating Z*

Chinneck: Search in MIP

56

 Z*: optimum objective function value

 Za: aspiration value based on estimate of Z*

 Adapting node selection methods to estimate Z*:

 Best-Estimate (uses pseudo-costs)

 Best-Projection (uses ratio of degradation in Z between root
and incumbent to reduction in integer infeasibility).

 Very little improvement: need something better!

New: Projection Based on Depth of Z*

Chinneck: Search in MIP

57

 Observation: nodes at depth of Z* have similar value

Frequent Pattern

Chinneck: Search in MIP

58

 Zero candidates = feasible solution

Linear Projection to Estimate Z* Depth

Chinneck: Search in MIP

59

Reconciling Multiple Active Nodes

Chinneck: Search in MIP

60

 Each active node has its own projection of Z* depth

 Which one should we use?

 Frequent pattern of optima: use the shallowest projection!

Method: Linear Extrapolation to Estimate Z*

Chinneck: Search in MIP

61

 For every active node with depth ≥ 20
 Fit least-squares line to number of candidates vs. depth using

all ancestor nodes

 Project depth of closest feasible solution (zero candidates)

 k = smallest extrapolated depth over all nodes

 Za = max of Zi over all nodes at depth (conservative)

Notes

 Za is the aspiration value that is set (minimization)

 20 chosen empirically: enough data to extrapolate

Example

Chinneck: Search in MIP

62

 Usually close, not perfect...

New: Modified Best Projection Aspiration

Chinneck: Search in MIP

63

Best projection for node selection (minimization):

 Za = Zi + (Zinc – Z0)si/s0

 si: sum of integer infeasibilities at node i

 s0: sum of integer infeasibilities at root node

 But we don’t always have an incumbent!

 Zmin(c): min Z at given number of candidates (c)

 Zmin(0) is optimum objective function value

 There is a pattern…

Projecting Zmin(c)

Chinneck: Search in MIP

64

Modified Best Projection Aspiration

Chinneck: Search in MIP

65

 Za = Zi + Ci[Zmin(Cmin)-Z0]/(C0-Cmin)
 Ci: number of candidate variables at node i

 Cmin: minimum number of candidate variables at any node

 Two-point projection: root node through min candidates node

Notes:

 Eliminates need for an incumbent

 Closeness to feasibility measure:
 number of candidate variables instead of sum of integer

infeasibilities

 Also useful for node selection

New: Distribution-based Jumpback

Chinneck: Search in MIP

66

Balance pursuit of both feasibility and optimality

 Minimizing: smaller Zi and Ci both desirable

 Zi tends to be large where Ci is small, and vice versa

Ranges quite different: how to balance?

 Assume independent normal probability distribns

 Normalize ranges of Zi and Ci

 P(Z ≤ Zi, C ≤ Ci) = F
Z
(Zi) F

C
(Ci)

 Choose node n where n = arg min
i
P(Z ≤ Zi, C ≤ Ci)

i.e. node n has lowest prob. of being “beaten”

Distributions: Gaussian-like

Chinneck: Search in MIP

67

New: Active Node Search Threshold

Chinneck: Search in MIP

68

 Advanced node selection can be time-consuming

 ANST: switch to simple depth-first backtracking
under certain conditions

 Rt = (cum. time for node selection)/(cum. time for all else)

 If Rt > 0.1, then switch to simple depth-first node selection

Testing Numerous Combinations

Chinneck: Search in MIP

69

Top to Bottom:
Node selection | Jumpback | ANST?
Mod Best Proj | Mod Best Proj Asp | ANST
Dist Node Sel | Mod Best Proj Asp| ANST
Def Best Proj | Def Best Proj Asp
GLPK defaults

Branching to Force Change

Chinneck: Search in MIP

70

 Question: What is the best branching strategy to
reach first incumbent quickly?

 Force more candidates to integrality at each branch.

Basic Question

Chinneck: Search in MIP

71

 You can either:

a) Branch to have largest probability of
satisfying constraints in a MIP, or

b) Branch to have smallest probability of
satisfying constraints in a MIP.

 Which policy leads to the first feasible
solution more quickly?

Clue: Active Constraints Variable Selection

Chinneck: Search in MIP

72

 Choose candidate variable having greatest impact
on the active constraints in current LP relaxation

 All other methods look at impact on objective fcn

 Reaches integer-feasibility very quickly

 Method A:

 choose candidate variable appearing in largest number of
active constraints, branch up

Clue: “Multiple Choice” Constraints

Chinneck: Search in MIP

73

x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary

 Branch down: other xi can take real values

 Branch up: all xi forced to integer values

E.g.: x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25, 0.25)

Branching on x1 :

 Branch down: (0, 0.333, 0.333, 0.333) or others

 Branch up: (1, 0, 0, 0) is only solution

New Principle

Chinneck: Search in MIP

74

Branch to Force Change

E.g. branch up on multiple choice constraints

E.g. active constraint branching variable selecn

 In general:

 Branch to cause change that will propagate to
as many candidate variables as possible.

Hope that many will take integer values.

Branching Direction

Chinneck: Search in MIP

75

 UP is best. Why?

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

Up vs. Down vs. Closest Integer: All Models

GLPK Default

Up

Down

Closest Integer

New: Probability-Based Branching

Chinneck: Search in MIP

76

Counting integer solutions (Pesant and Quimper 2008)

 l ≤ cx ≤ u : l, c, u are integer values, x integer

 Example: x1 + 5x2 ≤ 10 where x1, x2 ≥ 0
Value of x2 Range for x1 Soln count Soln density

x2=0 [0,10] 11 11/18 = 0.61

x2=1 [0,5] 6 6/18 = 0.33

x2=2 [0] 1 1/18 = 0.06

Total solutions 18

 Choose x2 =0 for max prob of satisfying constraint

 Is this the best thing to do?

Generalization

Assume:

 All variables bounded, real-valued

 Uniform distribution within range

Result:

 linear combination of variables yields approx. normal
distribution for function value

 Example: g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5
has mean 25, variance 110.83

 Plot.... look at g(x) ≤ 12

Chinneck: Search in MIP

77

g(x) = 3x1 + 2x2 + 5x3 ≤ 12, 0 ≤ x ≤ 5

Chinneck: Search in MIP

78

Probability density plot
• Cumulative prob of satisfying function in blue

Use for Branching

Chinneck: Search in MIP

79

• Different distributions for
DOWN and UP branches due
to changed variable ranges

• Different cumulative
probabilities of satisfying
constraint in each direction

Example:

• Branch on x1=1.5

• Down: x1 range [0,1], p=0.23

• Up: x1 range [2,5], p=0.05

Handling Equality Constraints

 Look at centeredness of RHS value in UP and DOWN
prob. curves

 For each direction:

 Calculate cum. prob. of ≤ RHS

 Calculate cum. prob. of ≥ RHS

 Calculate ratio:
(smaller cum. prob.)/(larger cum. prob.)

 Least centered = zero; most centered = 1

 For “highest prob.” methods, choose most centred
direction, i.e. ratio closest to 1

 For “lowest prob.” methods, choose least centred
direction, i.e. ratio closest to zero

Chinneck: Search in MIP

80

New Branching Direction Methods

Given branching variable, choose direction:

 Try UP and DOWN for each active constraint
branching variable is in. Choose direction:

 LCP: lowest cum. prob. in any active constraint

 HCP: highest cum. prob. in any active constraint

 LCPV: direction most often having lowest cum. prob.

 HCPV: direction most often having highest cum. prob.

Chinneck: Search in MIP

81

Choose Both Variable and Direction

 VDS-LCP: choose varb and direction having
lowest cum. prob. among all candidate varbs and all
active constraints containing them

 VDS-HCP: choose varb and direction having
highest cum. prob. among all candidate varbs and all
active constraints containing them

Chinneck: Search in MIP

82

New: Violation-Based Methods

 Fix all variable values except branching variable.
What is effect of branching UP vs. DOWN?

 Inequality: is active constraint violated or still satisfied?

 Equality: construct cum. prob. curves for up/down

 “violated”: less centred direction

 “satisfied”: more centred direction

 MVV: Most Violated Votes method

 Choose direction that violates largest number of active
constraints containing branching varb.

 MSV: Most Satisfied Votes method

Chinneck: Search in MIP

83

Experiments

 Compare methods in pairs:

 Branching to high vs. low prob. of satisfying active constraints

 GLPK default included in all comparisons

 Branching variable selection: GLPK default

 Except for variable-and-direction methods

Chinneck: Search in MIP

84

Chinneck: Search in MIP 85

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

LCP vs. HCP; LCPV vs. HCPV: All Models

GLPK Default

LCP

HCP

LCPV

HCPV

Chinneck: Search in MIP 86

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP: All Models

GLPK default

VDS-LCP

VDS-HCP

VDS Methods With Equality Constraints

Chinneck: Search in MIP

87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP: At Least One Equality

GLPK Default

VDS-LCP

VDS-HCP

• VDS-LCP even more dominant

• The centering strategy is effective

Chinneck: Search in MIP 88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

MVV vs. MSV: All Models

GLPK Default

MSV

MVV

Chinneck: Search in MIP 89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

MVV vs. MSV: Inequalities
Only

GLPK Default

MSV

MVV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

MVV vs. MSV: At Least One
Equality

GLPK Default

MSV

MVV

Best Methods: A-UP vs. VDS-LCP

Chinneck: Search in MIP

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

A-UP vs. VDS-LCP: All Models

GLPK Default

A-UP

VDS-LCP

Branching Up Revisited

 UP is good because many models have multiple choice
constraints!

 104 of 142 (73%) models have at least one

Chinneck: Search in MIP

91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f
M

o
d

e
ls

Ratio to Fewest Simplex Iterations

At Least One Multiple Choice
Constraint

GLPK Default

A-UP

VDS-LCP

A-LCP

A-LCPV

A-MVV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Ratio to Fewest Simplex Iterations

No Multiple Choice Constraints

GLPK Default

A-UP

VDS-LCP

A-LCP

A-LCPV

A-MVV

Conclusions

 Branching to force change in the candidate
variables is fastest to first feasible solution

 LCP better than HCP

 LCPV better than HCPV

 VDS-LCP better than VDS-HCP

 MVV better than MSV

 Surprise! Branching in low probability direction is best

 Constraint types have an impact:

 Equality constraints; multiple choice constraints

Chinneck: Search in MIP

92

Observations

Chinneck: Search in MIP

93

 MIP:

 Linear constraints always satisfied, integrality more difficult

 Branch to force integrality as much as possible

 Constraint programming:

 Integrality always satisfied, constraints more difficult

 Branch to satisfy constraints as much as possible

General Disjunctions

Chinneck: Search in MIP

94

 Faster integer-feasibility in MIPs by using
general disjunctions

Observation:
“45 degree” general
disjunctions leave no
integer solutions in
their “interior”

Method

Chinneck: Search in MIP

95

 Find 45 degree general disjunction that is:
 as parallel as possible or

 as perpendicular as possible

to active constraint having the most candidate varbs:
 Active inequality chosen: as parallel as possible

 Active equality chosen: as perpendicular as possible

 All coefficients must be +1, -1 or 0 for 45 degree
 Many possibilities

 Simple rules try to match/reverse signs in chosen constraint

 Branch in the direction that forces change

 45 degree general disjunction only when “stuck”

Results

Chinneck: Search in MIP

96

References

Chinneck: Search in MIP

97

 J. Pryor and J.W. Chinneck (2011), “Faster Integer-Feasibility in
Mixed-Integer Linear Programs by Branching to Force Change",
Computers and Operations Research, vol. 38, no. 8, pp. 1143-1152.

 D.T. Wojtaszek and J.W. Chinneck (2010), “Faster MIP Solutions
via New Node Selection Rules”, Computers and Operations
Research, vol. 37, no. 9, pp. 1544-1556.

 J. Patel and J.W. Chinneck (2007), "Active-Constraint Variable
Ordering for Faster Feasibility of Mixed Integer Linear Programs",
Mathematical Programming Series A, vol. 110, pp. 445-474.

A C T I V E C O N S T R A I N T S B R A N C H I N G V A R I A B L E S E L E C T I O N

B R A N C H I N G T O F O R C E C H A N G E

N O G O O D B R A N C H I N G

S T R O N G B R A N C H I N G

Chinneck: Search in MIP

98

Cross-Fertilization

Active Constraints Branching Variable Selection

Chinneck: Search in MIP

99

Constraint Programming

 Backdoor variable:

 Assigning a value to a backdoor variable simplifies the problem
as much as possible

 Is the active constraints branching variable selection
method choosing a “backdoor” variable?

Branching to Force Change

Constraint Programming:

 Fail-first: select varb having fewest remaining legal values

 Degree heuristic: select variable appearing in most
constraints on other varbs whose values are not yet set

Satisfiability:

 MAXO: select literal that appears most often

 MOMS: select literal appearing most often in clauses of
minimum size

 MAMS: combine MAXO and MOMS

 Jeroslaw-Wang: weights small clauses more heavily

Chinneck: Search in MIP

100

Nogood Branching

Chinneck: Search in MIP

101

Constraint Programming

 Intelligent backtracking

 Backtrack on members of the conflict set

 Conflict-directed backtracking

 The backtrack set is minimal [same as an Irreducible
Infeasible Subset of an infeasibility]

 Constraint Learning / Nogood Learning

 Add constraints based on the minimal infeasible set

Strong Branching

Chinneck: Search in MIP

102

Satisfiability

 UP (unit propagation):

 Make test assignment for each unassigned literal; count the
number of unit propagations triggered

 SUP (selective unit propagation):

 Reduce testing of literals by first running MAXO, MOMS,
MAMS, Jeroslaw-Wang to identify at most 4 candidates

