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I. Fundamentals
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Branch and Bound Basics

 Application: searching a discrete space

 Node: represents subsets of possible solutions.

 Branch: generate child nodes from current node.
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Root node

Leaf nodes

AH Land, A Doig (1960). 
An Automatic Method of 
Solving Discrete 
Programming Problems, 
Econometrica 28.



The Bounding Function
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 Bound: optimistic bound on the best possible solution at 
descendent of current node.

 As accurate as possible, but...
 Underestimate for minimization; Overestimate for maximization

 Incumbent: best complete feasible solution yet found. 
Updated as solution proceeds.

 Prune: remove node under certain conditions
 Descendent cannot be optimum: bounding function value worse 

than incumbent objective function value.
 Node and descendents cannot be feasible: decisions thus far 

prevent one or more constraints from ever being satisfied.

 Stop: when incumbent objective function value is better 
than (or equal to) the best bound on any node.

 Optimistic bounding function guarantees optimality.
 “Better than or equal to” finds alternative optima



What is Mixed-Integer Programming?
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 Linear objective function (Z) and constraints

 Variables: continuous / integer / binary
 At least one integer or binary variable

 Hereafter: “integer” includes “binary”

 MILP (or MIP) includes:
 Mixed problems (at least one continuous variable)

 Pure integer problems

 Pure binary problems

 Integer variables make it a discrete search problem

 Goal: best solution that also satisfies all integrality
conditions



Branch and Bound for MIP
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 Bounding function at a node: 
 linear program (LP) solution ignoring integer restrictions.

 Called the LP-relaxation.

 Integer-feasible  solution: 
 All integer variables have integer values.

 Leaf nodes are either:
 Integer-feasible (no descendent will be better)

 Infeasible (and no descendent will be feasible)

 Intermediate node: 
 solution satisfies all linear constraints and bounds (original or 

added), but not all integrality constraints.



Designing a MIP B&B Algorithm
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3 major search rule design decisions:
 Branching variable selection
 Branching direction selection
 Node selection: which node to explore next?

Numerous other heuristics:
 Local search
 Root node heuristics
 Etc.

MIP: B&B framework (guarantees optimum), plus 
numerous heuristics



Branching Variable and Direction Selection
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 Candidate variable: integer variable having non-
integer value in current LP relaxation solution. 

 E.g. x3 =5.7 in LP solution. Branching on x3 creates 
two child nodes:

 Down branch: parent LP + revised bound x3 ≤ 5

 Up branch: parent LP + revised bound x3 ≥ 6

 Search design issues:

 How to choose the branching variable?

 How to choose the branching direction (up or down)?

 The other child node may be visited later...



Branching on a Variable
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 LP at parent node  Branch on x1: 

 two child node LPs

 x1 integer in child solns

Z(3.75, 2.25) = 41.25
x1 ≥ 4

x1 ≤ 3

Down 
child

Up child

x1

x2



Node Selection
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 Search issue: which node to explore next?

 Depth-first:

 Choose next node from among last nodes created

 Common choice for MIP

 Big advantage: 

 Next LP identical to last one solved, except for one bound

 Next solution very quick due to advanced LP start

 Many other options (more later...)



Simple Example
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Maximize Z = 8x1 + 5x2

s.t. x1 + x2  6

9x1 + 5x2  45

x1, x2 are integer and nonnegative

 Search rules:

 Node selection: depth first. Simple backtrack at leaf.

 Branching variable selection: natural order.

 Branching direction: down. 



1. Root Node
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 Root node LP solution: Z(3.75, 2.25)=41.25

 Both variables are candidates: choose x1, branch down.

Z(3.75,2.25) = 41.25



2. Add Bound: x1 ≤ 3
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 Integer-feasible!

 First incumbent: 
Z(3,3)=39

 Still active nodes with 
bound > incumbent so 
continue.

 Next: backtrack and 
branch on x1, up.

Z(3,3) = 39

added bound x1 ≤ 3
1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3



3. Add bound: x1 ≥ 4
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 Not integer-feasible, 
bound > incumbent.

 Still active nodes with 
bound > incumbent so 
continue.

 Next: continue depth-
first, branch on x2, down.

Z(4,1.8)=41

added bound x1≥4

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4



4. Branch Down on x2
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 Not integer-feasible, bound 
> incumbent.

 Still active nodes with 
bound > incumbent so 
continue.

 Next: continue depth-first, 
branch on x1,down

Z(4.444,1)=40.555

added bound x2≤1

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1



5. Branch Down on x1
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 Integer-feasible, but worse 
than incumbent: prune.

 Still active nodes with bound 
> incumbent so continue.

 Next: backtrack, branch on x1, 
up.

Z(4,1)=37

added bound x1≤4 
Note: x1≥4 added 
previously

feasible

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4



6. Backtrack, add x1≥5
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 Feasible, replaces incumbent.  Still active nodes with bound 
> incumbent so continue.

 Next: backtrack, branch on x2, 
up.

Z(5,0)=40

single 
feasible 
point

added bound x1≥5

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4

6. Z(5,0)=40

add x1≥5



7. Backtrack, Add x2≥2
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 Infeasible!  Nowhere to backtrack: 
exit. 

 Solution: Z(5,0)=40.

added bound x2≥2

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4

6. Z(5,0)=40

add x1≥5

7. Infeasible

add x2≥2



General B&B Algorithm for MIP
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N: list of unexplored nodes, initially empty. No incumbent at start.
1. Solve root node LP relaxation.  Add it to N.
2. Choose node from N for exploration.
3. Solve LP relaxation for current node.

 If LP solution infeasible: go to Step 7.
 If LP solution is integer-feasible:

 Worse than incumbent, then go to Step 7.
 Better than incumbent, replace it, go to Step 7.

4. Choose candidate variable in current node for exploration.
5. Create two child nodes using branching variable, add to N.
6. Go to Step 2.
7. If N is empty then:

1. If no incumbent, exit with infeasible outcome.
2. Else exit with incumbent as optimum solution.

8. Go to Step 2.



Observations: Squaring-off
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 Adding bounds “squares 
off” the feasible region

 Objective function 
eventually “catches” on a 
squared-off cornerpoint

 Number of candidates 
generally decreases 
deeper in tree



Depth and Bounding Function Value
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 Bounding function 
values get worse (or stay 
the same) as you descend

 Each new level  removes 
part of parent feasible 
region:
 LP relaxation solution can 

only get worse (or stay the 
same)

 Solution stalls when 
bounds do not change 
much between levels

1. Root node
Z(3.75,2.25)=41.25

2. Z(3,3)=39

add x1≤3

3. Z(4,1.8)=41

add x1≥4

4. Z(4.444,1)=40.555

add x2≤1

5. Z(4,1)=37

add x1≤4

6. Z(5,0)=40

add x1≥5

7. Infeasible

add x2≥2



Observations
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 Any set of tree rules (node selection, branching variable 
selection and direction) will solve the MIP correctly.
 Different sets of rules generate different trees
 Some trees are much more efficient!

 Simplex method preferred for LP solutions because of 
ease of advanced start in child nodes.

 Some MIPs do not terminate (rare).

 Good early incumbent helps prune the search tree.
 Nodes with worse values of bounding function are removed.



Converging Bounds
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 MIP solved when 
the upper and lower 
bounds converge:
 incumbent objective 

function value 

 best bounding function  
value

 To speed the 
process:
 Better incumbents 

early

 Tighter bounding 
function values

Incumbent 
objective function
value

Best bounding 
function value

Nodes explored

Converging bounds when minimizing



Measuring Solution Speed
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 Total solution time: the gold standard.

 Total simplex iterations
 Approximates total time

 Ignores non-LP time (e.g. choosing node, variable, etc.)

 Useful if running on heterogeneous machines

 Total number of nodes
 May not correlate with time at all

 E.g. Depth-first search may have many more nodes but take much 
less time due to simplex advanced starts.

 Example:  pk1
 Depth-first: 4058 s; 9,778,734 iterations; 1,965,503 nodes

 Best-projection: 12,623 s; 4,329,434 iterations; 820,924 nodes



N O D E  S E L E C T I O N

B R A N C H I N G  V A R I A B L E  S E L E C T I O N

B R A N C H I N G  D I R E C T I O N  S E L E C T I O N

O T H E R  C O N C E P T S
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State of the Art



Node Selection
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 General goal (unrealistic): always choose a node 
that is an ancestor of an optimum node.

 i.e. Avoid superfluous search

 How much difference does it make?

 Mas76: depth-first 1,307 s, best-projection 20,610 s

 Philosophies:

 Pattern-based: breadth-first, depth-first

 Forecasting: best-first, best-estimate, best-projection



Depth-First Node Selection
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 Choose next node from among last nodes created

 Also need rule for branching direction: branch up or down?

 Backtrack at leaf node: 

 Choose last created active node.

 Speed advantage for MIP: 

 Next LP identical to last one solved, except for one bound

 Next solution very quick due to advanced LP start

 Often finds first incumbent early



Breadth-First Node Selection
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 Add nodes to bottom of a list as they are created

 Choose next node from top of list

1

2 3

4 5 6 7 8

9 10



Best-First Node Selection
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 Forecasting method, but with limited lookahead
 Just a bound on how well you might do

 Choose unexplored node with best bounding 
function value anywhere in tree
 Unexplored nodes initially given bounding function value from 

parent node.

 Disadvantage for MIP:
 Frequent re-starts of simplex solution without having the 

factorized basis from the parent node.



Best-Projection Node Selection
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 Forecasting, with lookahead:

 Project objective function value at a feasible descendent of 
current node.

 Assume constant rate of worsening of Z per unit 
integer infeasibility at the root node solution.

 For minimization, Zincumbent > Zroot:

 For min: choose node that gives smallest estimate.

i

root

rootincumbent
ii Inf

Inf

ZZ
Zestimate 









 
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An Aside: Pseudo-Costs
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Estimate effect on Z due to change in value of variable

 Minimizing: Zchild ≥ Zparent , so Z = Zchild
– Zparent

 fj = fractional part of variable, e.g. 0.7 if x =9.7

 Calculate separately for up and down branches on 
every integer variable, 

 Many different estimating and updating schemes

)1/(

/

j

up

j

up

j

j

down

j

down

j

fZP

fZP


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Best-Estimate Node Selection
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 Forecasting, with lookahead based on pseudo-costs
 Estimate Z at a feasible descendent of current node using pseudo-

costs for each candidate variable

 For minimization:

  
j j

up

jj

down

jii fPfPZestimate )1(,min



Other Node Selection Variants
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 Most feasible node selection: choose node having 
smallest sum of fractional values over all candidate 
variables

 Combinations:

 Depth-first to first incumbent, then best-first

 Interleave best-estimate with occasional best-first

 Etc.



Triggering Backtrack or Jumpback
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 Assuming depth-first node selection:
backtrack at a leaf (LP-infeasible or integer-feasible)

 Any other reasons to backtrack or jumpback?

 Jumpback: select a node other than the backtrack node

 Trigger using aspiration value:

 User-selected limit on objective function value:

 Bounding function value must be at least this good to explore node

 Backtrack or jumpback if node bound is worse than the 
aspiration value



Branching Variable Selection
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 How much difference does it make?

 Momentum1: time to first incumbent

 Cplex 9.0 default: time out at 28,800 s. Method B: 75 s.

 Most common idea: 

 Choose variable that worsens Z the most in child node

 Gives a tighter bound on descendent nodes

 Some methods choose variable and direction



Simple Variable Selection
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 Choose variable that is closest to feasibility

 Choose variable that is farthest from feasibility 
(closest to fj = 0.5)



Pseudo-Cost Variable Selection
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 Choose variable whose pseudo-cost worsens Z the most
in one of the child nodes:

Maxj{Pj
up×(1-fj), Pj

down×fj}

Alternatively choose variable that has:

 Maximum sum of degradations: 
Maxj{Pj

up×(1-fj) + Pj
down×fj}

 Maximum minimum degradation:
Maxj{min(Pj

up×(1-fj), Pj
down×fj)}

 Maximum product of degradations:
Maxj{Pj

up×(1-fj) × Pj
down×fj}



Strong Branching and Variants
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 Full strong branching: 

 Solve LP for up and down direction for every candidate varb.

 Choose variable and direction that degrade Z the most

 Computationally very expensive!

 Approximations to full strong branching:

 Limit the number of simplex iterations in each LP

 Limit which candidate variables are tested (e.g. based on 
pseudo-costs)



Driebeek and Tomlin
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1. Approximate strong branching:

 Just one dual simplex pivot for each LP
[can actually just be estimated, not performed]

2. Choose variable that has largest degradation in 
either direction

3. Choose direction that gives smallest degradation

 Default branching method in GLPK



Many Variants:
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 Hybrid strong/pseudo-cost branching

 Strong branching high in tree

 Pseudo-cost branching below a certain level

 Reliability branching:

 Pseudo-cost branching, except...

 Strong branching on varbs with uninitialized pseudo-costs and 
unreliable pseudo-costs

 Etc.



Branching Direction Selection
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Common rules:

 Branch up always

 Generally best in practice.

 Branch down always

 Branch to closest bound

 Branch to farthest bound

 Direction that forces branching variable away from 
its value at the root node

 Solver-proprietary rules



Other Concepts
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 Branch and Cut
 Branch and Price
 Preprocessing and Probing
 Neighbourhood search:

 Limited B&B search in the “neighbourhood” of promising node

 Special Ordered Sets:
 Enforce specified order of variable selection under certain conditions

 Specialized feasibility-seeking algorithms:
 OCTANE for binary problems
 Pivot-and-complement, pivot-and-shift
 The feasibility pump prior to B&B

 No-good learning
 General disjunctions:

 Linear disjunctions that are not axis-parallel

 Parallel processing
 Etc.!



A C T I V E - C O N S T R A I N T  V A R I A B L E  S E L E C T I O N

N E W  N O D E  S E L E C T I O N  M E T H O D S

B R A N C H I N G  T O  F O R C E  C H A N G E

G E N E R A L  D I S J U N C T I O N S
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New Directions



Active-Constraint Variable Selection
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 Concept: 

 LP-relaxation optimum is fixed by active constraints

 For different child optima, must impact the active constraints

 Choose candidate variable that has most impact on active 
constraints in current LP-relaxation solution

 Constraint-oriented approach vs. usual objective-
function-oriented approaches

 Focus on reaching first incumbent quickly



Illustration
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y 

x 

LP relaxation 
before 
branching 

Branch on x Branch on y 

Feasible 
Region 



Estimating Impact on Active Constraints
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1. Calculate “weight” Wik of each candidate i in each 
active constraint k

 0 if the candidate does not appear in constraint

2. For each candidate, total the weights over all of 
the active constraints.

3. Choose candidate having largest total weight.

 Dynamic variable ordering: changes at each node

 Many variants: A through P



Overview of Weighting Methods
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 Is candidate variable in active constraint or not?

 Relative importance of active constraint:
 Smaller weight if more candidate or integer variables: changes in 

other variables can compensate for changes in selected variable.

 Normalize by absolute sum of coefficients.

 Relative importance of candidate variable within active 
constraint:
 Greater weight if coefficient size is larger: candidate variable has 

more impact.

 Sum weights over all active constraints? Look at biggest 
impact on single constraint?

 Etc.



Some of the Better Weighting Schemes

Chinneck:  Search in MIP

48

 A: Wik=1.

 B: Wik = 1/ [Σ(|coeff of all variables|].

 L: Wik = 1/(no. integer variables)

 O: Wik = |coeffi|/(no. of integer variables)

 P: Wik = |coeffi|/(no. of candidate variables)

H methods: choose largest individual value of Wik

 HM: Wik = 1/[no. candidate variables]

 HO: Wik = |coeffi|/(no. of integer variables)

 Variants: voting, multiply by dual costs, etc.



Test Models
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MIPLIB 2003 set

 60 models (58 used: 2 time out on all methods)

 Range of difficulties

 Rows: 6–159,488

 Variables: 62–204,880

 Integer variables: 1–3,303

 Binary variables: 18–204,880

 Continuous variables: 1–13,321

 Nonzeroes: 312–1,024,059



Experiments
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 Cplex 9.0 (baseline): all default settings, except:
 MIP emphasis: find feasible solution

 Experiment 1 (basic B&B): all heuristics off

 Experiment 2: all heuristics turned on

 Active Constraint solver:
 Built on top of Cplex

 Callbacks set branching variable

 Data structures  not optimized: inefficient search

 Node selection:

 Experiment 1: Straight depth-first, branch up

 Experiment 2: Cplex default

 Goal: find first integer-feasible solution quickly.



Experiment 1: Heuristics Off
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 Method A faster 
than Cplex: 43/58 
tests  (74.1%)

Experiment 1 Iterations Performance Profiles
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Experiment 2: Heuristics On
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 25 models used:
 32 solved at root node

 3 failed on all methods

 Method B faster than 
Cplex: 14/25 models 
(56%)

 Cplex heuristics on:
 Half of models solve 

faster than before

 Half of models solve 
slower than before

Experiment 2 Iterations Performance Profiles
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First Incumbent Better than Cplex
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 Optimality Gap measures “distance” of solution from 
(unknown) optimum solution

 For minimization:
 Zlow: lowest bound on an active node

 Optimality gap: [|Zlow – Zincumbent|]/[ε+|Zlow|]

 Experimental Results:
 Exp. 1: active constraint methods have smaller gaps than Cplex

(53% for A, 78% for method P)

 Exp. 2: active constraint methods have smaller gaps than Cplex
(75% for B, 50% for HM)



New Node Selection Methods
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 Triggering Backtrack
 Feasibility Depth Extrapolation
Modified Best Projection Aspiration

 Choosing Node When Backtracking
Modified Best Projection
Distribution-based Backtracking
 Active Node Search Threshold: Changing Methods

 Goal: optimum solution as quickly as possible



Triggering Backtrack or Jumpback
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 Try to trigger when all node 
descendents:

 Unlikely to be optimal, or

 Unlikely to be feasible.

 Potential improvement:

 Suppose perfect aspiration

Geometric mean of ratio to best 
simplex iterations:

 no asp = 1.49

 perfect = 1.003



Set Aspiration by Estimating Z*
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 Z*: optimum objective function value

 Za: aspiration value based on estimate of Z*

 Adapting node selection methods to estimate Z*:

 Best-Estimate (uses pseudo-costs)

 Best-Projection (uses ratio of degradation in Z between root 
and incumbent to reduction in integer infeasibility).

 Very little improvement: need something better!



New: Projection Based on Depth of Z*
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 Observation: nodes at depth of Z* have similar value



Frequent Pattern
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 Zero candidates = feasible solution



Linear Projection to Estimate Z* Depth
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Reconciling Multiple Active Nodes
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 Each active node has its own projection of Z* depth

 Which one should we use?

 Frequent pattern of optima: use the shallowest projection!



Method: Linear Extrapolation to Estimate Z*
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 For every active node with depth ≥ 20
 Fit least-squares line to number of candidates vs. depth using 

all ancestor nodes

 Project depth of closest feasible solution (zero candidates)

 k = smallest extrapolated depth over all nodes

 Za = max of Zi over all nodes at depth (conservative)

Notes

 Za is the aspiration value that is set (minimization)

 20 chosen empirically: enough data to extrapolate



Example
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 Usually close, not perfect...



New: Modified Best Projection Aspiration
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Best projection for node selection (minimization):

 Za = Zi + (Zinc – Z0)si/s0

 si: sum of integer infeasibilities at node i

 s0: sum of integer infeasibilities at root node

 But we don’t always have an incumbent!

 Zmin(c): min Z at given number of candidates (c)

 Zmin(0) is optimum objective function value

 There is a pattern…



Projecting Zmin(c)
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Modified Best Projection Aspiration
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 Za = Zi + Ci[Zmin(Cmin)-Z0]/(C0-Cmin)
 Ci: number of candidate variables at node i

 Cmin: minimum number of candidate variables at any node

 Two-point projection: root node through min candidates node

Notes:

 Eliminates need for an incumbent

 Closeness to feasibility measure:
 number of candidate variables instead of sum of integer 

infeasibilities

 Also useful for node selection



New: Distribution-based Jumpback
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Balance pursuit of both feasibility and optimality

 Minimizing: smaller Zi and Ci both desirable

 Zi tends to be large where Ci is small, and vice versa

Ranges quite different: how to balance?

 Assume independent normal probability distribns

 Normalize ranges of Zi and Ci

 P(Z ≤ Zi, C ≤ Ci) = F
Z
(Zi)  F

C
(Ci)

 Choose node n where n = arg min
i
P(Z ≤ Zi, C ≤ Ci)

i.e. node n has lowest prob. of being “beaten”



Distributions: Gaussian-like
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New: Active Node Search Threshold
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 Advanced node selection can be time-consuming

 ANST: switch to simple depth-first backtracking 
under certain conditions

 Rt = (cum. time for node selection)/(cum. time for all else)

 If Rt > 0.1, then switch to simple depth-first node selection



Testing Numerous Combinations
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Top to Bottom:
Node selection | Jumpback | ANST?
Mod Best Proj | Mod Best Proj Asp | ANST
Dist Node Sel | Mod Best Proj Asp| ANST
Def Best Proj | Def Best Proj Asp
GLPK defaults



Branching to Force Change
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 Question: What is the best branching strategy to 
reach first incumbent quickly?

 Force more candidates to integrality at each branch.



Basic Question
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 You can either:

a) Branch to have largest probability of 
satisfying constraints in a MIP, or

b) Branch to have smallest probability of 
satisfying constraints in a MIP.

 Which policy leads to the first feasible 
solution more quickly?



Clue: Active Constraints Variable Selection
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 Choose candidate variable having greatest impact 
on the active constraints in current LP relaxation

 All other methods look at impact on objective fcn

 Reaches integer-feasibility very quickly

 Method A: 

 choose candidate variable appearing in largest number of 
active constraints, branch up



Clue: “Multiple Choice” Constraints
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x1 + x2 + x3 + ... xn {≤,=} 1, where xi are binary

 Branch down: other xi can take real values

 Branch up: all xi forced to integer values

E.g.:  x1 + x2 + x3 + x4 = 1 at (0.25, 0.25, 0.25, 0.25)

Branching on x1 :

 Branch down: (0, 0.333, 0.333, 0.333) or others

 Branch up: (1, 0, 0, 0) is only solution



New Principle
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Branch to Force Change

E.g. branch up on multiple choice constraints

E.g. active constraint branching variable selecn

 In general:

 Branch to cause change that will propagate to 
as many candidate variables as possible.

Hope that many will take integer values.



Branching Direction
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 UP is best.  Why?
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New: Probability-Based Branching
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Counting integer solutions (Pesant and Quimper 2008)

 l ≤ cx ≤ u : l, c, u are integer values, x integer

 Example: x1 + 5x2 ≤ 10 where x1, x2 ≥ 0
Value of x2 Range for x1 Soln count Soln density

x2=0 [0,10] 11 11/18 = 0.61

x2=1 [0,5] 6 6/18 = 0.33

x2=2 [0] 1 1/18 = 0.06

Total solutions 18

 Choose x2 =0 for max prob of satisfying constraint

 Is this the best thing to do?



Generalization

Assume:

 All variables bounded, real-valued

 Uniform distribution within range

Result:

 linear combination of variables yields approx. normal 
distribution for function value

 Example: g(x) = 3x1 + 2x2 + 5x3, 0 ≤ x ≤ 5
has mean 25, variance 110.83

 Plot.... look at g(x) ≤ 12
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g(x) = 3x1 + 2x2 + 5x3 ≤ 12, 0 ≤ x ≤ 5
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Probability density plot
• Cumulative prob of satisfying function in blue



Use for Branching
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• Different distributions for 
DOWN and UP branches due 
to changed variable ranges

• Different cumulative 
probabilities of satisfying 
constraint in each direction

Example:

• Branch on x1=1.5

• Down: x1 range [0,1], p=0.23

• Up: x1 range [2,5], p=0.05



Handling Equality Constraints

 Look at centeredness of RHS value in UP and DOWN 
prob. curves

 For each direction:

 Calculate cum. prob. of ≤ RHS

 Calculate cum. prob. of ≥ RHS

 Calculate ratio: 
(smaller cum. prob.)/(larger cum. prob.)

 Least centered = zero; most centered = 1

 For “highest prob.” methods, choose most centred
direction, i.e. ratio closest to 1

 For “lowest prob.” methods, choose least centred
direction, i.e. ratio closest to zero
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New Branching Direction Methods

Given branching variable, choose direction:

 Try UP and DOWN for each active constraint 
branching variable is in. Choose direction:

 LCP: lowest cum. prob. in any active constraint

 HCP: highest cum. prob. in any active constraint

 LCPV: direction most often having lowest cum. prob.

 HCPV: direction most often having highest cum. prob.
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Choose Both Variable and Direction

 VDS-LCP: choose varb and direction having 
lowest cum. prob. among all candidate varbs and all 
active constraints containing them

 VDS-HCP: choose varb and direction having 
highest cum. prob. among all candidate varbs and all 
active constraints containing them
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New: Violation-Based Methods

 Fix all variable values except branching variable. 
What is effect of branching UP vs. DOWN?

 Inequality: is active constraint violated or still satisfied?

 Equality: construct cum. prob. curves for up/down

 “violated”: less centred direction

 “satisfied”: more centred direction

 MVV: Most Violated Votes method

 Choose direction that violates largest number of active 
constraints containing branching varb.

 MSV: Most Satisfied Votes method
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Experiments

 Compare methods in pairs: 

 Branching to high vs. low prob. of satisfying  active constraints

 GLPK default included in all comparisons

 Branching variable selection: GLPK default 

 Except for variable-and-direction methods
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VDS Methods With Equality Constraints

Chinneck:  Search in MIP

87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
r

a
c

ti
o

n
 o

f 
M

o
d

e
ls

Ratio Fewest Simplex Iterations

VDS-LCP vs. VDS-HCP: At Least One Equality

GLPK Default

VDS-LCP

VDS-HCP

• VDS-LCP even more dominant

• The centering strategy is effective
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Best Methods: A-UP vs. VDS-LCP
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Branching Up Revisited

 UP is good because many models have multiple choice 
constraints!

 104 of 142 (73%) models have at least one
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Conclusions

 Branching to force change in the candidate 
variables is fastest to first feasible solution

 LCP better than HCP

 LCPV better than HCPV

 VDS-LCP better than VDS-HCP

 MVV better than MSV

 Surprise! Branching in low probability direction is best

 Constraint types have an impact:

 Equality constraints; multiple choice constraints
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Observations
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 MIP:

 Linear constraints always satisfied, integrality more difficult

 Branch to force integrality as much as possible

 Constraint programming:

 Integrality always satisfied, constraints more difficult

 Branch to satisfy constraints as much as possible



General Disjunctions
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 Faster integer-feasibility in MIPs by using 
general disjunctions

Observation: 
“45 degree” general 
disjunctions leave no 
integer solutions in 
their “interior”



Method
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 Find 45 degree general disjunction that is:
 as parallel as possible or

 as perpendicular as possible

to active constraint having the most candidate varbs:
 Active inequality chosen: as parallel as possible

 Active equality chosen: as perpendicular as possible

 All coefficients must be +1, -1 or 0 for 45 degree
 Many possibilities

 Simple rules try to match/reverse signs in chosen constraint

 Branch in the direction that forces change

 45 degree general disjunction only when “stuck”



Results
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Cross-Fertilization



Active Constraints Branching Variable Selection
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Constraint Programming

 Backdoor variable:

 Assigning a value to a backdoor variable simplifies the problem 
as much as possible

 Is the active constraints branching variable selection 
method choosing a “backdoor” variable?



Branching to Force Change

Constraint Programming:

 Fail-first: select varb having fewest remaining legal values

 Degree heuristic: select variable appearing in most 
constraints on other varbs whose values are not yet set

Satisfiability:

 MAXO: select literal that appears most often

 MOMS: select literal appearing most often in clauses of 
minimum size

 MAMS: combine MAXO and MOMS

 Jeroslaw-Wang: weights small clauses more heavily
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Nogood Branching
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Constraint Programming

 Intelligent backtracking

 Backtrack on members of the conflict set

 Conflict-directed backtracking

 The backtrack set is minimal [same as an Irreducible 
Infeasible Subset of an infeasibility]

 Constraint Learning / Nogood Learning

 Add constraints based on the minimal infeasible set 



Strong Branching
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Satisfiability

 UP (unit propagation):

 Make test assignment for each unassigned literal; count the 
number of unit propagations triggered

 SUP (selective unit propagation):

 Reduce testing of literals by first running MAXO, MOMS, 
MAMS, Jeroslaw-Wang to identify at most 4 candidates


