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Outline

e Fundamentals
¢ Best-first search & heuristics
e Abstraction
¢ Deployment in commercial software

¢ Heuristics

e Heuristics and Maximum Variance Unfolding
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Problem Size Comment

e Generally referring to interesting class of problems:

® The faster search the better

e Small enough to fit in memory

® Not enough memory for all-pairs shortest paths

e Solving different instances on same graph each time
e Examples:

e Maps / navigation

¢ \/ideo games
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State Space Search

¢ \\Ne assume:
e A start state

e A successor function

e A goal state or a goal test function
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Algorithm Measures

e Complete
e |s it guaranteed to find a solution if one exists

e Optimal

e |s it guaranteed the find the optimal solution
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Best-First Algorithms

e Choose a metric of best

e Expand states in order from best to worst

e Requires:
e Sorted OPEN list/priority queue
® CLOSED list
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Definitions

e Node is expanded when taken off queue

e Node is generated when put on queue

e g-cost is the cost from the start to the current node
® c(a, b) is the edge cost between a and b

e Sometimes also designates optimal path cost
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Best-First Algorithms

e Best-First Pseudo-Code
1. Put start on OPEN
2. While(OPEN is not empty)
1. Pop best node n from OPEN
2. if (n == goal) return path(n, goal)
3. for each child of n // generate children
1.put/update value on OPEN/CLOSED
3. return NO PATH
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Best-First Algorithms: Updating children

e Best-First child update
1. If child on OPEN, and new cost is less
1. Update cost and parent pointer
2. If child on CLOSED
1. Ignore™
3. Otherwise
1. Add to OPEN list

Nathan Sturtevant The Deployment of Fast A* Search



UNIVERSITY OF

D) DENVER

Uniform-Cost Search

e Dijkstra’s algorithm

¢ Best-first is the g-cost




Dijkstra - Detail
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Dijkstra’s Completeness

e Complete? / Will it find a solution?
e Finite Graph: yes
e [nfinite Graph
e Must have finite cost path to goal
e Edge costs at least epsilon

e Cannot have negative cost loops
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Dijkstra’s Optimality: High Level View

Closed
Nodes

oo,

Open Nodes

J

Unexpanded Nodes

A node on the optimal

path is always OPEN

with optimal g-cost.
—

Every node with finite

cost will eventually be
expanded.

| e— I N

When a node is
expanded, the
optimal path to that
node has been found.
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Dijkstra’s Time & Space Complexity

* |n exponential domains assumed:
¢ Branching factor b
e Minimum edge cost e
e O(b°®) -- ¢ - solution cost
e [n Al we ignore data structure overheads
e Assume that costs can be bucketed

e Harder to analyze domains that fit in memory
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Heuristic

e \What is a heuristic?
e An estimate of the cost from a given state to the goal

e \Where do they [traditionally] come from?

e Solutions to abstracted problem
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e Perfect heuristic: h*(n)
e Admissible: h(n) < h*(n) for all n
e Consistent:
e h(n) < c(n, m) + h(m) (directed)

e c(n, m) = |h(n) - h(m)| (undirected)

¢ | ocal consistency implies global consistency

e Consistency implies admissibility

Nathan Sturtevant
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f-cost Monotonically Non-decreasing

e f-cost: g-cost + h-cost

* h(n) < h(m) + c(n, m) [consistency]
® g(n) + h(n) < g(n) + h(m) + c(n, m)

* f(n) < g(m) + h(m) = f(m)

e f-cost is monotonic non-decreasing
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Pure Heuristic Search / Greedy Best-first Search

e Best-first is the h-cost
e Complete?

e Only on finite graph
e Optimal?

e No
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A*

® Best-first is the f-cost

ef=g+h

e f is an estimate of the complete path length
e Optimality?

e Depends on the heuristic
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A* Completeness

e Complete? / Will it find a solution?
e Finite Graph: yes
e |[nfinite Graph
e Must have finite cost path to goal
¢ Edge costs at least epsilon

e Cannot have negative cost loops

¢ Finite heuristic cost
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A* Optimality

e Same conditions as Dijkstra
* Plus one of:

e Consistent Heuristic

e Admissible heuristic

® Need to change child update rule
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A* - Analysis

e \Worst case: h(n) = 0 for all n
e Same as Dijkstra O(b°/¢)
e Best case: h(n) = h*(n) for all n

e Will go straight to the goal(?)
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A* implementation details

e Break ties towards states with higher g-cost

e [f a successor has f-cost as good as the front of OPEN
¢ Avoid the sorting operations
* Make sure heuristic matches problem representation

¢ \\Vith 8-connected grids don’t use
straight-line heuristic

Nathan Sturtevant
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A* is Optimal in Unigue Node Expansions

e Suppose there was a better algorithm, E

e There must be some node n which A* expands,
but E doesn’t

¢ Re-arrange the problem and put the goal after n

e E cannot be optimal/complete
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Can we make A* go faster?

e A*: f(n) = g(n) + h(n)
e Weighted A*: f(n) = (1-w)-g(n) + w-h(n)
o|fw=17
e Pure Heuristic Search
o |fw =07

e Dijkstra’s

e Similar to depth-bounded discrepancy search
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IDA*

o |IDA” is an iterative deepening version of A*
¢ \/ery useful in exponential domains
e Cost of iterations is completely amortized in search

* Not used on problems with many cycles

e Similar to Limited Discrepancy Search
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When A* doesn’t work well

* [nconsistent heuristics ignored for ~20 years

e Not thought to occur in practice

e \What happens when we have inconsistent heuristics?
e Optimal path to goal will still be found
¢ First path to a node is not necessarily optimal

e Can re-open closed nodes

Nathan Sturtevant The Deployment of Fast A* Search
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Definition

e | et N be the number of nodes expanded by A*

e N is the number of nodes not the number of
expansions

e A* can re-expand nodes

e Express in terms of N
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Analysis

e With N nodes, (1 + 2N-?) nodes expanded!
® 6 nodes
¢ “E” expanded 8 times
¢ “D” expanded 4 times
¢ “C” expanded 2 times

e “A” “B”, “G” expanded once
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Martelli, 1979

e Suggested Algorithm “B”
e Maintain global “F” value
e Maximum f-value opened so far
e |[f there are nodes on OPEN with f < F
e Open in order of increasing g-cost

e Dijkstra’s algorithm

Nathan Sturtevant The Deployment of Fast A* Search
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Martelli

e Algorithm works well, does it fix everything?

e No -- worst case still O(N?)

e Just lower cost of start heuristic to O
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Solution - Mero 84 - B’

e Pathmax
¢ \When generating a node:
* h'(n) = max(h(p) - c(n, p), h(n))
e h’(p) = max(h(p), min(h(c) + c(c, p))) over all children ¢
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Pathmax rules

e Pathmax:

@/@\bo

e BPMX [Felner, et al, 2005]

11
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nodef f | g | h | F
A 11| 0 |11 ] 11
E (301119 ] 12
D |129] 9 [20 | 13
C|27]| 6 |21 |14
B |23 ]| 1 [22 |23
C 23| 2 |21 |23
D |23 | 3 |20 | 23
E (23| 4 | 19| 23
G |[23|23]| 0 |23
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So...how bad?

* In the worst case, even B’ can be O(N?)
(A)

= ‘°’ﬁ> o

(H)Q)>71 _(l; (J) (K)GD_‘l (L)
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General Inconsistency Bounds

e Suppose A* performs @(N) > N expansions
e Some node must be re-opened (p(N) — N )/N times
® Pigeon-hole principle
e [f A is the minimum change in h-cost for a node
® h-cost is at least A-((N) — N )/N
e Solution cost is also at least A-(¢p(N) — N )/N
¢ \\e never open a node with f-cost > solution

Nathan Sturtevant The Deployment of Fast A* Search



UNIVERSITY OF

D) DENVER

How do we get inconsistency in practice

e Special properties (duality)
e Max of multiple heuristics

¢ Too expensive to use all heuristics, so use random
subset of heuristics

e Compression
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What is good/bad inconsistency

¢ “Good” inconsistency

¢ There are always good heuristics nearby

¢ 1-step BPMX to ‘fix’ bad values

¢ [Improve the run-time distribution of h-values
¢ “Bad” inconsistency

e Misleading values (worst path has lowest f-cost)
e Note: with no cycles, inconsistency isn’t a problem

Nathan Sturtevant The Deployment of Fast A* Search
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BPMX in A*/IDA*

e BPMX is free in IDA*
* More expensive in A*
¢ \We don’t naturally backtrack through closed list
e Choice:
e Backup as far as possible
e O(N?) cost or unbounded savings
e Backup only k steps O(kN) cost
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BPMX Best Case
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BPMX Worst Case

ORFORFORFOLRO0,
(A) (B) (€) (D) (G)@




Abstraction




UNIVERSITY OF

D) DENVER

Abstraction and Refinement

e Build a new representation of the state space

e \Want abstraction to be homomorphic (Holte)







16807 Nodes




5212 Nodes




1919 Nodes




/71 Nodes




316 Nodes
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Algorithm

e Choose group of nodes to abstract together
e Nodes must be connected
e Nodes cannot already be abstracted
e Repeat until all nodes abstracted

e Add an edge between abstract groups if there exists an
edge between any two nodes abstracted by each group
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Properties

e Homomorphic abstractions are refineable:

e |f any abstract path can be directly refined into a path
iInto the original graph

e All nodes on refined path abstract into abstract
path

e Every path in the original graph has an abstract
counterpart
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Refinement uses

e Used in road networks
e Used in model checking

e Used in heuristic search

e Used in robotics
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Approaches to Refinement-Style Search

e Find abstract path

e Partially refine path

e Refinement corridor

Nathan Sturtevant
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PRA*(k) - Partial-Refinement A*

e Find a complete abstract path
e Until a partial path is available

e Take first k steps of abstract path and refine

¢ Follow path & refine more steps when needed

Nathan Sturtevant The Deployment of Fast A* Search
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Start Goal
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Abstraction in Road Networks

¢ Road networks happen to have special properties




Highway Dimension
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Highway Dimension

* Problems with low highway dimension can be solved
quickly

e Abraham et. al., 2010
e Suite of techniques developed
e Reach (Goldenberg, et al)
e Contraction hierarchies (Geisberger, et al)

¢ Transit node routing (Bast, et al)
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Initial Motivation: Lines
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(Generalization
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(Generalization




(Generalization

b

UNIVERSITY OF

DENVER




UNIVERSITY OF

D) DENVER

(Generalization




UNIVERSITY OF

D) DENVER

(Generalization




(Generalization

b

UNIVERSITY OF

DENVER




UNIVERSITY OF

D) DENVER

Building Contraction Hierarchies

e Choose most important node n

¢ For all pairs of neighbors, check if removing n
iInfluences the shortest path between neighbors

e [f not, just remove n

e |f so, add shortcut edge with the same cost as the
shortest path through n

Nathan Sturtevant The Deployment of Fast A* Search
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Node Importance

e Ad-hoc ordering for nodes:

e Edge difference: how many edges are removed/
introduced when n is contracted

e Original edges: how many edges have already been
abstracted below shortcut edges introduced when n
IS contracted

e Upward path length: max of unpacked path length

e Contracted neighbors: how many neighbors are
already contracted

Nathan Sturtevant The Deployment of Fast A* Search
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Easy for Abstraction
Harder for CH
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Easy for CH
Harder for Abstraction
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Use in practice

* |n practice:
® Do not contract the whole graph

e Contract until the graph reaches a particular size

e Then search with differential heuristics




Deployment:
Dragon Age Origins
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Example: Dragon Age (BioWare)

e 2006 - BioWare approached UofA
e Pathfinding using 100ms (1ms available)
e No memory budget
e |[nitial implementation (late 2006 - early 2007)
e Additional enhancements (2008)
e Achieved 100pus average per unit per frame

e Computation spread across frames
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High-level planning

Medium-level planning

Sparse graph

Sparse graph
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Dragon Age - Additional Enhancements

e Many new features over previous games:
e Map-wide pathfinding
e Trap/area effect avoidance
e [Improved static obstacle/creature avoidance

¢ [mproved path-following animation

e Many other small performance tweaks




Sectors / Regions

e Divide world into
large sectors

e Fixed size
* [Index implicitly

e Divide sectors
into regions

® Regions entirely
connected

® Regions have a
center point




Edges

e | ook at borders of

regions to determine

edges




Abstract Graph

e Original Map:

¢ 32x32 = 1024 cells
e Abstract Graph:

*9 nodes

* 10 edges




Usage Example

e Find abstract

pal’ents I() ---—————————————i— _______________
* Find abstract path : /'fai
e Find real path § g \
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Total Work Compared to A*
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Dragon Age: Origins
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Dragon Age Pathflndlng Top Two Layers of Abstraction
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Artifacts of Abstraction
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Errors at the grid level

e (5rid versus real-valued locations
e PC/NPC location is a real-valued location

® Mouse clicks are real-value location

¢ | ow-level planning is on a grid
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Indoor Map
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Dragon Age Pathfinding  indoor Map: Detai










Path Continuity

e Orzammar

e NPC doesn’t remember
movement history
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Heuristics

e Background

e Pattern Databases

¢ True-Distance Heuristics
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Previous work

e Pattern Databases (PDB)

® Pre-computed, memory-based heuristic

1 9|14 112(3
13 4 115 4151617
121101 3 | 8 38 10|11
/ 6 |11 12113 (14|15
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Previous work - PDB

e Mark some states as “don’t care”
e Creates abstract state space

e Solve all states in abstract state space exactly

14
15 6|7
10 _> 10| 11
/ 6 |11 14115
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PDB -- analysis

e PDBs have been applied to state spaces which grow
exponentially

e Branching factor b
e Search depth d

e State space size O(b?)

Nathan Sturtevant The Deployment of Fast A* Search



UNIVERSITY OF

D) DENVER

PDB -- analysis

e Assume we can store 1/f of the state space

e Assume abstract branching factor is the same

¢ | et c be the max. dist. in the abstract state space
epc=1/f-bc
ec =d - logps(f)

e Heuristics only lose a small amount of accuracy
e 60MB 15-puzzle PDB has max value of 54

e 10TB state space has max value of 80

Nathan Sturtevant The Deployment of Fast A* Search
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Abstraction in Maps
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Analysis -- maps

e 2D maps grow with r? (r is radius of search)
e [f we can store 1/f of the full state space
ec?=1/f r?
ec=r/ff
e Abstract search space by factor of 4

e Maximum heuristic value is reduced by factor of 2

e Bad for heuristics!

Nathan Sturtevant
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b

UNIVERSITY OF

DENVER

................

................

..............
.................
----------------
................
...............
..............
............
.............
...........
.......
......
.......

11,614 states
Width: 157

3,455 states
Width: 80




UNIVERSITY OF

D) DENVER

|deals

¢ \Want a heuristic that can be used between any two
states

e \Want to minimize cost of the heuristic

¢ Heuristic should be based on true-distances in the
world instead of abstract distances

e New class, True-Distance Heuristic
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Differential Heuristic (ALT)

e [f we have a solution to the single-source shortest-path
problem for a state s, we can use it to get a heuristic
between any two states

¢ Assume undirected graph
*h(a, b) =] d(a, s) - d(b, s) |

¢ Invented and re-invented in several different
communities

Nathan Sturtevant The Deployment of Fast A* Search
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Differential Heuristic

e Need to store multiple heuristics and take the max to
get good results
< N entries > <——— f entries (used) ——>

N entries
z
<—— entries (used) ——>

All-Pairs Shortest Path Differential Heuristic (DH)

Nathan Sturtevant The Deployment of Fast A* Search
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Improving performance

e \What if we don’t have much memory available?
e Can the heuristic be compressed?
e Only store heuristics at some nodes
e Goal is fixed, so find all heuristics around the goal

e During search use whatever heuristic is available

e Subtract distance from goal




Memory Usage: 1S
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Building Heuristics and
Maximum Variance Unfolding

Euclidean Heuristic Optimization, Chris Rayner, Michael Bowling, Nathan Sturtevant, AAAl 2011







UNIVERSITY OF

D) DENVER

Euclidean heuristics

¢ Euclidean heuristics are heuristic values that can be
computed as distances in some Euclidean space of d
dimensions

*hi, J) = yi — yjl

e | et Y be the n by d matrix storing the vectors yi. Y
implicitly encodes the heuristic function.

e Can we find the best Euclidean heuristic?

Nathan Sturtevant The Deployment of Fast A* Search
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Finding Euclidean Heuristics

miniymize L(Y)

subject to Y is admissible and consistent
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Expressing admissibility constraints

e \Want to avoid pre-computing all paths and adding them
as constraints in problem formulation

* | ocal consistency — global consistency — admissibility

Nathan Sturtevant The Deployment of Fast A* Search
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Loss function

e Minimize squared error between true distance and
heuristic

¢ \Weight coordinates /, j which are more important
LOY) = > Wild(i,j)> = llyi — >
1,]

e Reformulate as:

maxiymize Z Wiillyi — vl
1,]

Nathan Sturtevant The Deployment of Fast A* Search
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Optimization problem

e \Weighted generalization of MVU [Weinberger et al 20006]
(for nonlinear dimensionality reduction)

e | inks learning a heuristic to manifold learning

e Two separate areas which haven’t been connected
before

e A differential heuristic is a one-dimensional
embedding in Euclidean space

¢ Previously had heuristic methods for choosing where
to place heuristics

e Now have formal optimization

Nathan Sturtevant The Deployment of Fast A* Search
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Example usage: 3-dimensional cube
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Example: Dragon Age Maps
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Example: Word search (edit distance)
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Summary

¢ | ooking for paths through state space

e Abstraction and heuristic technigues used to speed
search

¢ Availability of technique depends on underlying
problem characteristics

e | arge class of interesting problems which fit in memory

Nathan Sturtevant

The Deployment of Fast A* Search
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Many other areas of search

e Planning

¢ Building better heuristics from logic description of
problem

e Randomizing search
e Multiple OPEN lists

e Monte-Carlo variations

e Suboptimal search




