The Deployment of Fast A* Search
CPAIOR Master Class

Prof. Nathan Sturtevant
University of Denver

)

UNIVERSITY OF

DENVER

UNIVERSITY OF

D) DENVER

Outline

e Fundamentals
¢ Best-first search & heuristics
e Abstraction
¢ Deployment in commercial software

¢ Heuristics

e Heuristics and Maximum Variance Unfolding

Best-First Search

UNIVERSITY OF

D) DENVER

Problem Size Comment

e Generally referring to interesting class of problems:

® The faster search the better

e Small enough to fit in memory

® Not enough memory for all-pairs shortest paths

e Solving different instances on same graph each time
e Examples:

e Maps / navigation

¢ \/ideo games

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

State Space Search

¢ \\Ne assume:
e A start state

e A successor function

e A goal state or a goal test function

UNIVERSITY OF

D) DENVER

Algorithm Measures

e Complete
e |s it guaranteed to find a solution if one exists

e Optimal

e |s it guaranteed the find the optimal solution

UNIVERSITY OF

D) DENVER

Best-First Algorithms

e Choose a metric of best

e Expand states in order from best to worst

e Requires:
e Sorted OPEN list/priority queue
® CLOSED list

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Definitions

e Node is expanded when taken off queue

e Node is generated when put on queue

e g-cost is the cost from the start to the current node
® c(a, b) is the edge cost between a and b

e Sometimes also designates optimal path cost

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Best-First Algorithms

e Best-First Pseudo-Code
1. Put start on OPEN
2. While(OPEN is not empty)
1. Pop best node n from OPEN
2. if (n == goal) return path(n, goal)
3. for each child of n // generate children
1.put/update value on OPEN/CLOSED
3. return NO PATH

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Best-First Algorithms: Updating children

e Best-First child update
1. If child on OPEN, and new cost is less
1. Update cost and parent pointer
2. If child on CLOSED
1. Ignore™
3. Otherwise
1. Add to OPEN list

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Uniform-Cost Search

e Dijkstra’s algorithm

¢ Best-first is the g-cost

Dijkstra - Detail

Dijkstra

UNIVERSITY OF

D) DENVER

Dijkstra’s Completeness

e Complete? / Will it find a solution?
e Finite Graph: yes
e [nfinite Graph
e Must have finite cost path to goal
e Edge costs at least epsilon

e Cannot have negative cost loops

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Dijkstra’s Optimality: High Level View

Closed
Nodes

oo,

Open Nodes

J

Unexpanded Nodes

A node on the optimal

path is always OPEN

with optimal g-cost.
—

Every node with finite

cost will eventually be
expanded.

| e— I N

When a node is
expanded, the
optimal path to that
node has been found.

UNIVERSITY OF

D) DENVER

Dijkstra’s Time & Space Complexity

* |n exponential domains assumed:
¢ Branching factor b
e Minimum edge cost e
e O(b°®) -- ¢ - solution cost
e [n Al we ignore data structure overheads
e Assume that costs can be bucketed

e Harder to analyze domains that fit in memory

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Heuristic

e \What is a heuristic?
e An estimate of the cost from a given state to the goal

e \Where do they [traditionally] come from?

e Solutions to abstracted problem

Properties of Heuristics

UNIVERSITY OF

D) DENVER

e Perfect heuristic: h*(n)
e Admissible: h(n) < h*(n) for all n
e Consistent:
e h(n) < c(n, m) + h(m) (directed)

e c(n, m) = |h(n) - h(m)| (undirected)

¢ | ocal consistency implies global consistency

e Consistency implies admissibility

Nathan Sturtevant

The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

f-cost Monotonically Non-decreasing

e f-cost: g-cost + h-cost

* h(n) < h(m) + c(n, m) [consistency]
® g(n) + h(n) < g(n) + h(m) + c(n, m)

* f(n) < g(m) + h(m) = f(m)

e f-cost is monotonic non-decreasing

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Pure Heuristic Search / Greedy Best-first Search

e Best-first is the h-cost
e Complete?

e Only on finite graph
e Optimal?

e No

Nathan Sturtevant The Deployment of Fast A* Search

Pure Heuristic Search

UNIVERSITY OF

D) DENVER

A*

® Best-first is the f-cost

ef=g+h

e f is an estimate of the complete path length
e Optimality?

e Depends on the heuristic

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

A* Completeness

e Complete? / Will it find a solution?
e Finite Graph: yes
e |[nfinite Graph
e Must have finite cost path to goal
¢ Edge costs at least epsilon

e Cannot have negative cost loops

¢ Finite heuristic cost

UNIVERSITY OF

D) DENVER

A* Optimality

e Same conditions as Dijkstra
* Plus one of:

e Consistent Heuristic

e Admissible heuristic

® Need to change child update rule

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

A* - Analysis

e \Worst case: h(n) = 0 for all n
e Same as Dijkstra O(b°/¢)
e Best case: h(n) = h*(n) for all n

e Will go straight to the goal(?)

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

A* implementation details

e Break ties towards states with higher g-cost

e [f a successor has f-cost as good as the front of OPEN
¢ Avoid the sorting operations
* Make sure heuristic matches problem representation

¢ \\Vith 8-connected grids don’t use
straight-line heuristic

Nathan Sturtevant

The Deployment of Fast A* Search

A* - Ties towards high g-costs

A* - Ties towards low g-costs

Heuristic: Euclidean Distance

UNIVERSITY OF

D) DENVER

A* is Optimal in Unigue Node Expansions

e Suppose there was a better algorithm, E

e There must be some node n which A* expands,
but E doesn’t

¢ Re-arrange the problem and put the goal after n

e E cannot be optimal/complete

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Can we make A* go faster?

e A*: f(n) = g(n) + h(n)
e Weighted A*: f(n) = (1-w)-g(n) + w-h(n)
o|fw=17
e Pure Heuristic Search
o |fw =07

e Dijkstra’s

e Similar to depth-bounded discrepancy search

Nathan Sturtevant The Deployment of Fast A* Search

Weight A*

UNIVERSITY OF

D) DENVER

IDA*

o |IDA” is an iterative deepening version of A*
¢ \/ery useful in exponential domains
e Cost of iterations is completely amortized in search

* Not used on problems with many cycles

e Similar to Limited Discrepancy Search

Inconsistent Heuristics

UNIVERSITY OF

D) DENVER

When A* doesn’t work well

* [nconsistent heuristics ignored for ~20 years

e Not thought to occur in practice

e \What happens when we have inconsistent heuristics?
e Optimal path to goal will still be found
¢ First path to a node is not necessarily optimal

e Can re-open closed nodes

Nathan Sturtevant The Deployment of Fast A* Search

23

0

13

0

11

10

f
23

11

12
10

1

3

0

1

14

23 | 23

node

E

G

UNIVERSITY OF

D) DENVER

Definition

e | et N be the number of nodes expanded by A*

e N is the number of nodes not the number of
expansions

e A* can re-expand nodes

e Express in terms of N

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Analysis

e With N nodes, (1 + 2N-?) nodes expanded!
® 6 nodes
¢ “E” expanded 8 times
¢ “D” expanded 4 times
¢ “C” expanded 2 times

e “A” “B”, “G” expanded once

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Martelli, 1979

e Suggested Algorithm “B”
e Maintain global “F” value
e Maximum f-value opened so far
e |[f there are nodes on OPEN with f < F
e Open in order of increasing g-cost

e Dijkstra’s algorithm

Nathan Sturtevant The Deployment of Fast A* Search

h
23
13

0

f
23
14

23 | 23

node
A
B

G

A (23

23

UNIVERSITY OF

D) DENVER

Martelli

e Algorithm works well, does it fix everything?

e No -- worst case still O(N?)

e Just lower cost of start heuristic to O

F
0
11
12
12
13
13
13
14
14
14
14
23

clo|lo|lm|o[~lm]|o|L2|[~|[m]|o|o
o|lo|Z|o|l|lo|~|o|—|a]o| x| &
—o|F|Y|L|2|2| | I|o|o <&

node
A
E
D
E
C
D
E
B
C
D
E
G

UNIVERSITY OF

D) DENVER

Solution - Mero 84 - B’

e Pathmax
¢ \When generating a node:
* h'(n) = max(h(p) - c(n, p), h(n))
e h’(p) = max(h(p), min(h(c) + c(c, p))) over all children ¢

Nathan Sturtevant The Deployment of Fast A* Search

Pathmax rules

e Pathmax:

@/@\bo

e BPMX [Felner, et al, 2005]

11
{“} b
&) @

@/@\é R

OMO

nodef f | g | h | F
A 11| 0 |11] 11
E (301119] 12
D |129] 9 [20 | 13
C|27]| 6 |21 |14
B |23]| 1 [22 |23
C 23| 2 |21 |23
D |23 | 3 |20 | 23
E (23| 4 | 19| 23
G |[23|23]| 0 |23

UNIVERSITY OF

D) DENVER

So...how bad?

* In the worst case, even B’ can be O(N?)
(A)

= ‘°’ﬁ> o

(H)Q)>71 _(l; (J) (K)GD_‘l (L)

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

General Inconsistency Bounds

e Suppose A* performs @(N) > N expansions
e Some node must be re-opened (p(N) — N)/N times
® Pigeon-hole principle
e [f A is the minimum change in h-cost for a node
® h-cost is at least A-((N) — N)/N
e Solution cost is also at least A-(¢p(N) — N)/N
¢ \\e never open a node with f-cost > solution

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

How do we get inconsistency in practice

e Special properties (duality)
e Max of multiple heuristics

¢ Too expensive to use all heuristics, so use random
subset of heuristics

e Compression

UNIVERSITY OF

D) DENVER

What is good/bad inconsistency

¢ “Good” inconsistency

¢ There are always good heuristics nearby

¢ 1-step BPMX to ‘fix’ bad values

¢ [Improve the run-time distribution of h-values
¢ “Bad” inconsistency

e Misleading values (worst path has lowest f-cost)
e Note: with no cycles, inconsistency isn’t a problem

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

BPMX in A*/IDA*

e BPMX is free in IDA*
* More expensive in A*
¢ \We don’t naturally backtrack through closed list
e Choice:
e Backup as far as possible
e O(N?) cost or unbounded savings
e Backup only k steps O(kN) cost

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

BPMX Best Case

UNIVERSITY OF

D) DENVER

BPMX Worst Case

ORFORFORFOLRO0,
(A) (B) (€) (D) (G)@

Abstraction

UNIVERSITY OF

D) DENVER

Abstraction and Refinement

e Build a new representation of the state space

e \Want abstraction to be homomorphic (Holte)

16807 Nodes

5212 Nodes

1919 Nodes

/71 Nodes

316 Nodes

UNIVERSITY OF

D) DENVER

Algorithm

e Choose group of nodes to abstract together
e Nodes must be connected
e Nodes cannot already be abstracted
e Repeat until all nodes abstracted

e Add an edge between abstract groups if there exists an
edge between any two nodes abstracted by each group

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Properties

e Homomorphic abstractions are refineable:

e |f any abstract path can be directly refined into a path
iInto the original graph

e All nodes on refined path abstract into abstract
path

e Every path in the original graph has an abstract
counterpart

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Refinement uses

e Used in road networks
e Used in model checking

e Used in heuristic search

e Used in robotics

UNIVERSITY OF

D) DENVER

Approaches to Refinement-Style Search

e Find abstract path

e Partially refine path

e Refinement corridor

Nathan Sturtevant

The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

PRA*(k) - Partial-Refinement A*

e Find a complete abstract path
e Until a partial path is available

e Take first k steps of abstract path and refine

¢ Follow path & refine more steps when needed

Nathan Sturtevant The Deployment of Fast A* Search

Start

Goal

b

UNIVERSITY OF

DENVER

UNIVERSITY OF

D) DENVER

Start Goal

UNIVERSITY OF

D) DENVER

UNIVERSITY OF

D) DENVER

Abstraction in Road Networks

¢ Road networks happen to have special properties

Highway Dimension

b

UNIVERSITY OF

DENVER

UNIVERSITY OF

D) DENVER

Highway Dimension

* Problems with low highway dimension can be solved
quickly

e Abraham et. al., 2010
e Suite of techniques developed
e Reach (Goldenberg, et al)
e Contraction hierarchies (Geisberger, et al)

¢ Transit node routing (Bast, et al)

Nathan Sturtevant The Deployment of Fast A* Search

Contraction Hierarchies

b

UNIVERSITY OF

DENVER

Initial Motivation: Lines

b

UNIVERSITY OF

DENVER

UNIVERSITY OF

D) DENVER

(Generalization

UNIVERSITY OF

D) DENVER

(Generalization

(Generalization

b

UNIVERSITY OF

DENVER

UNIVERSITY OF

D) DENVER

(Generalization

UNIVERSITY OF

D) DENVER

(Generalization

(Generalization

b

UNIVERSITY OF

DENVER

UNIVERSITY OF

D) DENVER

Building Contraction Hierarchies

e Choose most important node n

¢ For all pairs of neighbors, check if removing n
iInfluences the shortest path between neighbors

e [f not, just remove n

e |f so, add shortcut edge with the same cost as the
shortest path through n

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Node Importance

e Ad-hoc ordering for nodes:

e Edge difference: how many edges are removed/
introduced when n is contracted

e Original edges: how many edges have already been
abstracted below shortcut edges introduced when n
IS contracted

e Upward path length: max of unpacked path length

e Contracted neighbors: how many neighbors are
already contracted

Nathan Sturtevant The Deployment of Fast A* Search

Using CHs

Easy for Abstraction
Harder for CH

b

UNIVERSITY OF

DENVER

Easy for CH
Harder for Abstraction

b

UNIVERSITY OF

DENVER

UNIVERSITY OF

D) DENVER

Use in practice

* |n practice:
® Do not contract the whole graph

e Contract until the graph reaches a particular size

e Then search with differential heuristics

Deployment:
Dragon Age Origins

UNIVERSITY OF

D) DENVER

Example: Dragon Age (BioWare)

e 2006 - BioWare approached UofA
e Pathfinding using 100ms (1ms available)
e No memory budget
e |[nitial implementation (late 2006 - early 2007)
e Additional enhancements (2008)
e Achieved 100pus average per unit per frame

e Computation spread across frames

Nathan Sturtevant The Deployment of Fast A* Search

Pathfinding Architecture

b

UNIVERSITY OF

DENVER

High-level planning

Medium-level planning

Sparse graph

Sparse graph

UNIVERSITY OF

D) DENVER

Dragon Age - Additional Enhancements

e Many new features over previous games:
e Map-wide pathfinding
e Trap/area effect avoidance
e [Improved static obstacle/creature avoidance

¢ [mproved path-following animation

e Many other small performance tweaks

Sectors / Regions

e Divide world into
large sectors

e Fixed size
* [Index implicitly

e Divide sectors
into regions

® Regions entirely
connected

® Regions have a
center point

Edges

e | ook at borders of

regions to determine

edges

Abstract Graph

e Original Map:

¢ 32x32 = 1024 cells
e Abstract Graph:

*9 nodes

* 10 edges

Usage Example

e Find abstract

pal’ents I() ---—————————————i— _______________
* Find abstract path : /'fai
e Find real path § g \

UNIVERSITY OF

D) DENVER

Total Work Compared to A*

100000 T

...........................

10000 L -

1 OOO _ :.2:' :) o‘........".............é_ soveuig seetire Y PPPA

1 OO _.:;-' , I s rvereereeseesennsssenns R

Total Nodes Expanded

— A* (Average)
------ Abstraction (Max)
— Abstraction (Average)

—_
o
|

— Minimum

16 32 48 64

80

|
96

Bucket Size (path length/4)

112

128

Bl DENVER

Dragon Age: Origins

Nathan Sturtevant The Deployment of Fast A* Search

Engine Features

Dragon Age Pathflndlng Top Two Layers of Abstraction

Outdoor Map

o)
L=
O
=
(-
L
e

QY]
al

)

@)
<

C

O

O)

©

| -
A

trap

iding a

Avo

. ... < , .

A

)

3,

__:_._.:_..._. ! \
Y 4 _.,,,ﬁ,,,‘..wo... A |

Artifacts of Abstraction

UNIVERSITY OF

D) DENVER

Errors at the grid level

e (5rid versus real-valued locations
e PC/NPC location is a real-valued location

® Mouse clicks are real-value location

¢ | ow-level planning is on a grid

.

U
L9
g
#
(Q
~
&
®
o
v
v
k.
i

| . -
o= - = s
[ag =¥

—_— — —

@

Solution -- end one step early and then go to goal

Indoor Map

o)
=
O
=
(-
L
e

QY]
al

)

@)
<

C

O

O)

©

| -
A

Dragon Age Pathfinding indoor Map: Detai

Path Continuity

e Orzammar

e NPC doesn’t remember
movement history

b

UNIVERSITY OF

DENVER

Heuristics

UNIVERSITY OF

D) DENVER

Heuristics

e Background

e Pattern Databases

¢ True-Distance Heuristics

UNIVERSITY OF

D) DENVER

Previous work

e Pattern Databases (PDB)

® Pre-computed, memory-based heuristic

1 9|14 112(3
13 4 115 4151617
121101 3 | 8 38 10|11
/ 6 |11 12113 (14|15

The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Previous work - PDB

e Mark some states as “don’t care”
e Creates abstract state space

e Solve all states in abstract state space exactly

14
15 6|7
10 _> 10| 11
/ 6 |11 14115

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

PDB -- analysis

e PDBs have been applied to state spaces which grow
exponentially

e Branching factor b
e Search depth d

e State space size O(b?)

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

PDB -- analysis

e Assume we can store 1/f of the state space

e Assume abstract branching factor is the same

¢ | et c be the max. dist. in the abstract state space
epc=1/f-bc
ec =d - logps(f)

e Heuristics only lose a small amount of accuracy
e 60MB 15-puzzle PDB has max value of 54

e 10TB state space has max value of 80

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Abstraction in Maps

................

................

..............

................

...............

..............

........

.......

11,614 states 3,455 states

UNIVERSITY OF

D) DENVER

Analysis -- maps

e 2D maps grow with r? (r is radius of search)
e [f we can store 1/f of the full state space
ec?=1/f r?
ec=r/ff
e Abstract search space by factor of 4

e Maximum heuristic value is reduced by factor of 2

e Bad for heuristics!

Nathan Sturtevant

The Deployment of Fast A* Search

Abstraction in Maps

b

UNIVERSITY OF

DENVER

................

................

..............
.................

................
...............
..............
............
.............
...........
.......
......
.......

11,614 states
Width: 157

3,455 states
Width: 80

UNIVERSITY OF

D) DENVER

|deals

¢ \Want a heuristic that can be used between any two
states

e \Want to minimize cost of the heuristic

¢ Heuristic should be based on true-distances in the
world instead of abstract distances

e New class, True-Distance Heuristic

UNIVERSITY OF

D) DENVER

Differential Heuristic (ALT)

e [f we have a solution to the single-source shortest-path
problem for a state s, we can use it to get a heuristic
between any two states

¢ Assume undirected graph
*h(a, b) =] d(a, s) - d(b, s) |

¢ Invented and re-invented in several different
communities

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Differential Heuristic

e Need to store multiple heuristics and take the max to
get good results
< N entries > <——— f entries (used) ——>

N entries
z
<—— entries (used) ——>

All-Pairs Shortest Path Differential Heuristic (DH)

Nathan Sturtevant The Deployment of Fast A* Search

A* - 10 diff. heuristics

UNIVERSITY OF

D) DENVER

Improving performance

e \What if we don’t have much memory available?
e Can the heuristic be compressed?
e Only store heuristics at some nodes
e Goal is fixed, so find all heuristics around the goal

e During search use whatever heuristic is available

e Subtract distance from goal

Memory Usage: 1S

25000 7
| === A* - 10S Interleaved, no BPMX ,"\,'
j . i N
ZOOOOi ———= A* - Qctile . ii v : ,\/JV
1 — A* - 10S Consistent Lookup ’: ' S
i i 7
150005 — A* - 10S Interleaved, BPMX(x) .,/ A -
I A* - 10S Interleaved, BPMX(1) || ad
10000 -
5000 -
0 - T N L D I
0 50 100 150 200 250 300 350 400 450 500
Solution Path Length

Inconsistent heuristics in theory and practice Ariel Felner, Uzi Zahavi, Robert

Holte, Jonathan Schaeffer, Nathan Sturtevant, Zhifu Zhang, Artificial Intelligence

The Compressed Differential Heuristics

Meir Goldenberg, Nathan Sturtevant, Ariel Felner, Jonathan Schaeffer, AAAI 2011

550

S A AN

Building Heuristics and
Maximum Variance Unfolding

Euclidean Heuristic Optimization, Chris Rayner, Michael Bowling, Nathan Sturtevant, AAAl 2011

UNIVERSITY OF

D) DENVER

Euclidean heuristics

¢ Euclidean heuristics are heuristic values that can be
computed as distances in some Euclidean space of d
dimensions

*hi, J) = yi — yjl

e | et Y be the n by d matrix storing the vectors yi. Y
implicitly encodes the heuristic function.

e Can we find the best Euclidean heuristic?

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Finding Euclidean Heuristics

miniymize L(Y)

subject to Y is admissible and consistent

UNIVERSITY OF

D) DENVER

Expressing admissibility constraints

e \Want to avoid pre-computing all paths and adding them
as constraints in problem formulation

* | ocal consistency — global consistency — admissibility

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Loss function

e Minimize squared error between true distance and
heuristic

¢ \Weight coordinates /, j which are more important
LOY) = > Wild(i,j)> = llyi — >
1,]

e Reformulate as:

maxiymize Z Wiillyi — vl
1,]

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Optimization problem

e \Weighted generalization of MVU [Weinberger et al 20006]
(for nonlinear dimensionality reduction)

e | inks learning a heuristic to manifold learning

e Two separate areas which haven’t been connected
before

e A differential heuristic is a one-dimensional
embedding in Euclidean space

¢ Previously had heuristic methods for choosing where
to place heuristics

e Now have formal optimization

Nathan Sturtevant The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Example usage: 3-dimensional cube

600 : : :
: ; Y RA
A& A Differential >83.9 /
A—A Euclidean //
5001 100 ;‘ |
/
/
/
50%
D 400t /A .
© /
- o
© 0% A
C>2_ /
300} / -
v A
wn /
Q) /
S A
Z 200‘ //]
A
/
A
100} A]
A/A/
- 19.0
O = 1
0 5 10 15 20

Solution length (nodes)

UNIVERSITY OF

D) DENVER

Example: Dragon Age Maps

4000

----- Default (1.5 Octile))

3500} | @ @ Differential (1) _
A A Differential (3)

3000l | @@ Euclidean (1))

A—aA Euclidean (3) e -

N

(9,

o

o
T

100% -

2000 50% .

Nodes expanded

1500 0% . |

1000 _ - |

150 200 250 300 350 400

Solution length (nodes)

0 50 100

UNIVERSITY OF

D) DENVER

Example: Word search (edit distance)

1400 T . ®
@ -@ Differential (6) o \\
1500l | & Differential (18) K o _ FOUR
@@ Euclidean (6) / \
a4 Euclidean (18) //' } FOUL
B \ _
g | ! \ FOIL
© \
§ 800F 50% /// ‘\ . FAIL
S | / y FALL
O 600 é . -
S -

4001

LE
VE

200

Solution length (nodes)

Summary

UNIVERSITY OF

D) DENVER

Summary

¢ | ooking for paths through state space

e Abstraction and heuristic technigues used to speed
search

¢ Availability of technique depends on underlying
problem characteristics

e | arge class of interesting problems which fit in memory

Nathan Sturtevant

The Deployment of Fast A* Search

UNIVERSITY OF

D) DENVER

Many other areas of search

e Planning

¢ Building better heuristics from logic description of
problem

e Randomizing search
e Multiple OPEN lists

e Monte-Carlo variations

e Suboptimal search

