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Outline

• Fundamentals

• Best-first search & heuristics

• Abstraction

• Deployment in commercial software

• Heuristics

• Heuristics and Maximum Variance Unfolding



Best-First Search
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Problem Size Comment

• Generally referring to interesting class of problems:

• The faster search the better

• Small enough to fit in memory

• Not enough memory for all-pairs shortest paths

• Solving different instances on same graph each time

• Examples:

• Maps / navigation

• Video games



Nathan Sturtevant The Deployment of Fast A* Search

State Space Search

• We assume:

• A start state

• A successor function

• A goal state or a goal test function



Nathan Sturtevant The Deployment of Fast A* Search

Algorithm Measures

• Complete

• Is it guaranteed to find a solution if one exists

• Optimal

• Is it guaranteed the find the optimal solution
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Best-First Algorithms

• Choose a metric of best

• Expand states in order from best to worst

• Requires:

• Sorted OPEN list/priority queue

• CLOSED list
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Definitions

• Node is expanded when taken off queue

• Node is generated when put on queue

• g-cost is the cost from the start to the current node

• c(a, b) is the edge cost between a and b

• Sometimes also designates optimal path cost
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Best-First Algorithms

• Best-First Pseudo-Code

1. Put start on OPEN

2. While(OPEN is not empty)

1. Pop best node n from OPEN

2. if (n == goal) return path(n, goal)

3. for each child of n // generate children

1.put/update value on OPEN/CLOSED

3. return NO PATH

1.put/update value on OPEN/CLOSED
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Best-First Algorithms: Updating children

• Best-First child update

1. If child on OPEN, and new cost is less

1. Update cost and parent pointer

2. If child on CLOSED

1. Ignore*

3. Otherwise

1. Add to OPEN list
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Uniform-Cost Search

• Dijkstra’s algorithm

• Best-first is the g-cost



Dijkstra - Detail



Dijkstra
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Dijkstra’s Completeness

• Complete? / Will it find a solution?

• Finite Graph: yes

• Infinite Graph

• Must have finite cost path to goal

• Edge costs at least epsilon

• Cannot have negative cost loops



Unexpanded Nodes

Open Nodes

Dijkstra’s Optimality: High Level View

Closed 
Nodes

G

S

A node on the optimal 
path is always OPEN 
with optimal g-cost.

Every node with finite 
cost will eventually be 
expanded.

When a node is 
expanded, the 
optimal path to that 
node has been found.
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Dijkstra’s Time & Space Complexity

• In exponential domains assumed:

• Branching factor b

• Minimum edge cost e

• O(bc/e) -- c - solution cost

• In AI we ignore data structure overheads

• Assume that costs can be bucketed

• Harder to analyze domains that fit in memory
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Heuristic

• What is a heuristic?

• An estimate of the cost from a given state to the goal

• Where do they [traditionally] come from?

• Solutions to abstracted problem
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Properties of Heuristics

• Perfect heuristic: h*(n)

• Admissible: h(n) ! h*(n) for all n

• Consistent:

• h(n) ! c(n, m) + h(m)     (directed)

• c(n, m) " |h(n) - h(m)|    (undirected)

• Local consistency implies global consistency

• Consistency implies admissibility

n

g

m
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f-cost Monotonically Non-decreasing

• f-cost: g-cost + h-cost

• h(n) ! h(m) + c(n, m)   [consistency]

• g(n) + h(n) ! g(n) + h(m) + c(n, m)

• f(n) ! g(m) + h(m) = f(m)

• f-cost is monotonic non-decreasing
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Pure Heuristic Search / Greedy Best-first Search

• Best-first is the h-cost 

• Complete?

• Only on finite graph

• Optimal?

• No



Pure Heuristic Search
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A*

• Best-first is the f-cost 

• f = g + h

• f is an estimate of the complete path length

• Optimality?

• Depends on the heuristic
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A* Completeness

• Complete? / Will it find a solution?

• Finite Graph: yes

• Infinite Graph

• Must have finite cost path to goal

• Edge costs at least epsilon

• Cannot have negative cost loops

• Finite heuristic cost
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A* Optimality

• Same conditions as Dijkstra

• Plus one of:

• Consistent Heuristic

• Admissible heuristic

• Need to change child update rule
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A* - Analysis

• Worst case: h(n) = 0 for all n

• Same as Dijkstra O(bc/e)

• Best case: h(n) = h*(n) for all n

• Will go straight to the goal(?)
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A* implementation details

• Break ties towards states with higher g-cost

• If a successor has f-cost as good as the front of OPEN

• Avoid the sorting operations

• Make sure heuristic matches problem representation

• With 8-connected grids don’t use                    
straight-line heuristic



A* - Ties towards high g-costs



A* - Ties towards low g-costs



Heuristic: Euclidean Distance
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A* is Optimal in Unique Node Expansions

• Suppose there was a better algorithm, E

• There must be some node n which A* expands,       
but E doesn’t

• Re-arrange the problem and put the goal after n

• E cannot be optimal/complete



A*
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Can we make A* go faster?

• A*: f(n) = g(n) + h(n)

• Weighted A*: f(n) = (1-w)·g(n) + w·h(n)

• If w = 1?

• Pure Heuristic Search

• If w = 0?

• Dijkstra’s

• Similar to depth-bounded discrepancy search



Weight A*
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IDA*

• IDA* is an iterative deepening version of A*

• Very useful in exponential domains

• Cost of iterations is completely amortized in search

• Not used on problems with many cycles

• Similar to Limited Discrepancy Search



Inconsistent Heuristics
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When A* doesn’t work well

• Inconsistent heuristics ignored for ~20 years

• Not thought to occur in practice

• What happens when we have inconsistent heuristics?

• Optimal path to goal will still be found

• First path to a node is not necessarily optimal

• Can re-open closed nodes
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Definition

• Let N be the number of nodes expanded by A*

• N is the number of nodes not the number of 
expansions

• A* can re-expand nodes

• Express in terms of N
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Analysis

• With N nodes, (1 + 2N-2) nodes expanded!

• 6 nodes

• “E” expanded 8 times

• “D” expanded 4 times

• “C” expanded 2 times

• “A”, “B”, “G” expanded once
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Martelli, 1979

• Suggested Algorithm “B”

• Maintain global “F” value

• Maximum f-value opened so far

• If there are nodes on OPEN with f < F

• Open in order of increasing g-cost

• Dijkstra’s algorithm
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Martelli

• Algorithm works well, does it fix everything?

• No -- worst case still O(N2)

• Just lower cost of start heuristic to 0
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Solution - Mero 84 - B’

• Pathmax

• When generating a node:

• h’(n) = max(h(p) - c(n, p), h(n))

• h’(p) = max(h(p), min(h(c) + c(c, p))) over all children c
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3

• Pathmax:

• BPMX [Felner, et al, 2005]
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So...how bad?

• In the worst case, even B’ can be O(N2)
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General Inconsistency Bounds

• Suppose A* performs φ(N) > N expansions

• Some node must be re-opened (φ(N) # N )/N times

• Pigeon-hole principle

• If $ is the minimum change in h-cost for a node

• h-cost is at least $·(φ(N) # N )/N

• Solution cost is also at least $·(φ(N) # N )/N

• We never open a node with f-cost > solution
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How do we get inconsistency in practice

• Special properties (duality)

• Max of multiple heuristics

• Too expensive to use all heuristics, so use random 
subset of heuristics

• Compression
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What is good/bad inconsistency

• “Good” inconsistency

• There are always good heuristics nearby

• 1-step BPMX to ‘fix’ bad values

• Improve the run-time distribution of h-values

• “Bad” inconsistency

• Misleading values (worst path has lowest f-cost)

• Note: with no cycles, inconsistency isn’t a problem
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BPMX in A*/IDA*

• BPMX is free in IDA*

• More expensive in A*

• We don’t naturally backtrack through closed list

• Choice:

• Backup as far as possible

• O(N2) cost or unbounded savings

• Backup only k steps O(kN) cost
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Abstraction
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Abstraction and Refinement

• Build a new representation of the state space

• Want abstraction to be homomorphic (Holte)
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Algorithm

• Choose group of nodes to abstract together

• Nodes must be connected

• Nodes cannot already be abstracted

• Repeat until all nodes abstracted

• Add an edge between abstract groups if there exists an 
edge between any two nodes abstracted by each group



Nathan Sturtevant The Deployment of Fast A* Search

Properties

• Homomorphic abstractions are refineable:

• If any abstract path can be directly refined into a path 
into the original graph

• All nodes on refined path abstract into abstract 
path

• Every path in the original graph has an abstract 
counterpart
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Refinement uses

• Used in road networks

• Used in model checking

• Used in heuristic search

• Used in robotics
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Approaches to Refinement-Style Search

• Find abstract path

• Partially refine path

• Refinement corridor
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PRA*(k) - Partial-Refinement A*

• Find a complete abstract path

• Until a partial path is available

• Take first k steps of abstract path and refine

• Follow path & refine more steps when needed



Start Goal



Start Goal



Start Goal
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Abstraction in Road Networks

• Road networks happen to have special properties



Highway Dimension

r4r
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Highway Dimension

• Problems with low highway dimension can be solved 
quickly

• Abraham et. al., 2010

• Suite of techniques developed

• Reach (Goldenberg, et al)

• Contraction hierarchies (Geisberger, et al)

• Transit node routing (Bast, et al)



Contraction Hierarchies
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Building Contraction Hierarchies

• Choose most important node n

• For all pairs of neighbors, check if removing n 
influences the shortest path between neighbors

• If not, just remove n

• If so, add shortcut edge with the same cost as the 
shortest path through n
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Node Importance

• Ad-hoc ordering for nodes:

• Edge difference: how many edges are removed/
introduced when n is contracted

• Original edges: how many edges have already been 
abstracted below shortcut edges introduced when n 
is contracted

• Upward path length: max of unpacked path length

• Contracted neighbors: how many neighbors are 
already contracted
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Figure 6: Two possible CHs from the input graph. The nodes
are labeled with their importance and accordingly vertically
aligned.

but for simplicity we demonstrate this process in the con-
tracted graph in Figure 5(c), where we find the shortest path
between nodes 3 and 5. Node 5 has no neighbors that are
more important, so no neighbors will be expanded in the bi-
directional search. Node 3 has two neighbors, but only node
4 is more important, so only that node will be expanded.
Node 4’s only unexplored neighbor is node 5, so the shortest
path from node 3 to node 5 passes through node 4.

The shortest path from node 2 to node 5 uses the shortcut
edge. Along with this edge is information which allows it to
be unpacked into a full path between nodes 2, 1, and 5. This
means that it only takes a single expansion to find the length
of the shortest path (4), but generating the actual path takes
longer, as shortcut edges must be unpacked.

Node ordering
The node ordering is important for the efficiency of the
CH and allows different tradeoffs between time and space.
Shortcuts increase the required space but can reduce the
search space. In Figure 6, we show an example of the con-
traction of a line graph. Contracting the nodes in the order
of the line, Figure 6(b), requires no shortcuts, but does not
reduce the search space. Consider the query between the
leftmost and rightmost node. The CH query will visit nodes
{1, . . . , 7} in the forward search and node 7 in the backward
search. So all nodes of the graph are visited. Figure 6(c), on
the other hand, requires 2 shortcuts. But the same query will
only visit nodes {1, 5, 7} in the forward search and {4, 6, 7}
in the backward search. For general line graphs, iteratively
contracting every other node requires O(n) shortcuts, result-
ing in a search space of size O(log n).

A heuristic ordering is used to compute the importance of
each node, because the computation of an optimal ordering
(i.e. shortcut minimal or search space minimal) is NP-hard.
We use a priority queue whose minimum element contains

the best node to contract next, and then successively contract
nodes according to the priority of the remaining nodes.

Before defining the heuristic terms, we introduce the edge
property r(u, w) as the number of original edges contracted
below an edge in the graph. It is initialized with 1 for each
edge. If a new shortcut (u, w) is added from the edges (u, v)
and (v, w), we set r(u, w) := r(u, v) + r(v, w). Addition-
ally, let φ(v), be the set of shortcuts that would be added if
node v would be contracted next.

The priority is the linear combination of four terms:
• The first importance term for contraction is δ(v) or the

edge difference. This is the net difference in edges
added to the graph by contracting v next. Formally,
let δ(v) := |φ(v)| − |{(u, v) | v uncontracted}| −
|{(v, w) | v uncontracted}|. This term works to keep the
contracted graph sparse and to improve the distribution of
node contractions.

• The next term is σ(v), which measures the number
of original edges contracted into new shortcut edges
introduced when contracting v. We define σ(v) :=∑

(u,w)∈φ(v) r(u, w). This term works to keep the con-
tracted graph sparse.

• The third term is γ(v), an upper bound on the length of
an upward path. It is initialized with 0 for each node.
After the contraction of node v, we update γ(u) :=
max(γ(u), γ(v) + 1) for each uncontracted neighbor u
of v. This term is used to improve query performance, but
does not have a large impact.

• The final term is λ(v), the number of already contracted
neighbors u of v. This term improves query performance
by improving the distribution of node contractions.
We assign each node v a priority ρ(v) based on how at-

tractive it is to contract it next. Initially, this term is com-
puted for every node in the graph and the nodes are placed
into a priority queue. For the sake of efficiency, after each
new node is contracted, these values are re-computed only
for the neighbors of the contracted node, but not for the en-
tire graph. As a result of this lazy updating, the heuristics are
then recomputed for a node before contracting it, and if the
value increases then the node is re-inserted into the priority
queue instead of being contracted.

Given a weighted coefficient vector ζ, we define the pri-
ority ρ(v) := ζ · (δ(v), σ(v), γ(v), λ(v))T . The choice of
ζ is an important tuning parameter which we look at during
the experimental results. For our fast version (Large Mem)
we use ζ = (25, 60, 20, 2) and for the space-efficient ver-
sion (Low Mem) we use ζ = (0, 1, 0, 0). This version only
contracts based on the σ(v) term.

Reducing Contraction Hierarchy Overhead
There are a number of observations which reduce the mem-
ory required for contraction hierarchies. The first important
observation is that we need to store an edge only with its less
important endpoint, as the search only progresses upwards
in importance. Because shortcuts can span long paths, we
need to store them explicitly and cannot use the data struc-
ture used for DAO. Instead, we use a block representation
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Figure 6: Two possible CHs from the input graph. The nodes
are labeled with their importance and accordingly vertically
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but for simplicity we demonstrate this process in the con-
tracted graph in Figure 5(c), where we find the shortest path
between nodes 3 and 5. Node 5 has no neighbors that are
more important, so no neighbors will be expanded in the bi-
directional search. Node 3 has two neighbors, but only node
4 is more important, so only that node will be expanded.
Node 4’s only unexplored neighbor is node 5, so the shortest
path from node 3 to node 5 passes through node 4.

The shortest path from node 2 to node 5 uses the shortcut
edge. Along with this edge is information which allows it to
be unpacked into a full path between nodes 2, 1, and 5. This
means that it only takes a single expansion to find the length
of the shortest path (4), but generating the actual path takes
longer, as shortcut edges must be unpacked.

Node ordering
The node ordering is important for the efficiency of the
CH and allows different tradeoffs between time and space.
Shortcuts increase the required space but can reduce the
search space. In Figure 6, we show an example of the con-
traction of a line graph. Contracting the nodes in the order
of the line, Figure 6(b), requires no shortcuts, but does not
reduce the search space. Consider the query between the
leftmost and rightmost node. The CH query will visit nodes
{1, . . . , 7} in the forward search and node 7 in the backward
search. So all nodes of the graph are visited. Figure 6(c), on
the other hand, requires 2 shortcuts. But the same query will
only visit nodes {1, 5, 7} in the forward search and {4, 6, 7}
in the backward search. For general line graphs, iteratively
contracting every other node requires O(n) shortcuts, result-
ing in a search space of size O(log n).

A heuristic ordering is used to compute the importance of
each node, because the computation of an optimal ordering
(i.e. shortcut minimal or search space minimal) is NP-hard.
We use a priority queue whose minimum element contains

the best node to contract next, and then successively contract
nodes according to the priority of the remaining nodes.

Before defining the heuristic terms, we introduce the edge
property r(u, w) as the number of original edges contracted
below an edge in the graph. It is initialized with 1 for each
edge. If a new shortcut (u, w) is added from the edges (u, v)
and (v, w), we set r(u, w) := r(u, v) + r(v, w). Addition-
ally, let φ(v), be the set of shortcuts that would be added if
node v would be contracted next.

The priority is the linear combination of four terms:
• The first importance term for contraction is δ(v) or the

edge difference. This is the net difference in edges
added to the graph by contracting v next. Formally,
let δ(v) := |φ(v)| − |{(u, v) | v uncontracted}| −
|{(v, w) | v uncontracted}|. This term works to keep the
contracted graph sparse and to improve the distribution of
node contractions.

• The next term is σ(v), which measures the number
of original edges contracted into new shortcut edges
introduced when contracting v. We define σ(v) :=∑

(u,w)∈φ(v) r(u, w). This term works to keep the con-
tracted graph sparse.

• The third term is γ(v), an upper bound on the length of
an upward path. It is initialized with 0 for each node.
After the contraction of node v, we update γ(u) :=
max(γ(u), γ(v) + 1) for each uncontracted neighbor u
of v. This term is used to improve query performance, but
does not have a large impact.

• The final term is λ(v), the number of already contracted
neighbors u of v. This term improves query performance
by improving the distribution of node contractions.
We assign each node v a priority ρ(v) based on how at-

tractive it is to contract it next. Initially, this term is com-
puted for every node in the graph and the nodes are placed
into a priority queue. For the sake of efficiency, after each
new node is contracted, these values are re-computed only
for the neighbors of the contracted node, but not for the en-
tire graph. As a result of this lazy updating, the heuristics are
then recomputed for a node before contracting it, and if the
value increases then the node is re-inserted into the priority
queue instead of being contracted.

Given a weighted coefficient vector ζ, we define the pri-
ority ρ(v) := ζ · (δ(v), σ(v), γ(v), λ(v))T . The choice of
ζ is an important tuning parameter which we look at during
the experimental results. For our fast version (Large Mem)
we use ζ = (25, 60, 20, 2) and for the space-efficient ver-
sion (Low Mem) we use ζ = (0, 1, 0, 0). This version only
contracts based on the σ(v) term.

Reducing Contraction Hierarchy Overhead
There are a number of observations which reduce the mem-
ory required for contraction hierarchies. The first important
observation is that we need to store an edge only with its less
important endpoint, as the search only progresses upwards
in importance. Because shortcuts can span long paths, we
need to store them explicitly and cannot use the data struc-
ture used for DAO. Instead, we use a block representation
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Easy for Abstraction
Harder for CH

Table 2: Results for path planning.
All 10% long 1% hard 1%

nodes [µs] nodes [µs] nodes [µs] nodes [µs]
A* 128.0 228.0 348.6 595.0 937.6 1400 1395.5 2400

A* + 10 heuristics 40.5 110.0 77.2 209.0 146.2 390.0 848.9 1700
Sector Abs (16 × 16) 44.3 75.8 115.4 183.0 318.4 404.1 452.5 609.8
Sector Abs (24 × 24) 25.3 43.2 63.7 98.0 183.6 214.5 250.5 302.3
Sector Abs (32 × 32) 17.2 30.5 42.0 64.3 121.4 137.5 165.5 187.8

CH Large Mem 32.3 36.4 70.3 68.6 61.6 49.4 152.9 144.5
CH Low Mem 59.8 59.3 137.8 150.4 130.3 101.7 374.9 334.3

in nodes expanded with a lower reduction in speed except
on the hardest problems, where performance is still poor.
The worst-case results would improve with the use of more
heuristics, however this would increase the memory and
node expansion overhead as well. This approach returns
optimal paths through the abstract graph, but the paths are
not usable until the entire path is completed, a disadvantage
when compared to the other approaches.

The next three lines of Table 2 evaluate the performance
of the second level of abstraction as the sector size changes.
For both the sector abstraction and CH, we evaluate the cost
of finding the initial path here, and then measure the refine-
ment cost separately. The A* performance is based on a 8×8
abstraction, so using a high-level 16×16 abstraction would,
in the best case, provide a 4 times reduction in nodes ex-
panded, while we see a 3 times reduction across each set of
problems. The 24 × 24 abstraction results in approximately
a 5 times reduction in node expansions, and the 32 × 32
abstraction results in approximately an 8 times reduction in
node expansions, even on the hardest problems. Thus, the
abstraction can effectively reduce node expansions. Addi-
tional work is required to incrementally refine this result into
a followable path.

Finally, we look at contraction hierarchies at the bottom of
Table 2. We compare only the mobile implementation, as the
other implementation uses too much memory. We compare
one contraction ordering which takes more memory and re-
sults in more efficient planning to another ordering that uses
less memory but has less efficient planning. As with abstrac-
tion, the contraction hierarchies return paths that must be re-
fined in order to use them. We report just the time to find the
path and not to refine it, as this can be done incrementally.

The low-memory approach is about 2 times slower than
the higher memory approach. The performance of the CH
is worse than a 24 × 24 or 32 × 32 abstraction on average,
and for the 10% hardest problems. But, a peculiar things
happens when we look at the longest 1% of all problems.
Contraction hierarchies here are actually faster than on the
10% longest from each map. This shows the strength of
contraction hierarchies and why they have been so success-
ful in road networks. Longer paths are likely to have more
shortcuts resulting in very short paths. For these paths the
refinement process will be more expensive, but optimal dis-
tances can be computed very quickly. If we instead look
at the hardest 1% of problems, we see that there are many
problems that are hard for contraction hierarchies, with an

(a) (b)

Figure 8: Map (a) is easy for abstraction but hard for CHs.
Map (b) is hard for abstraction but easier for CHs.

average solution time of 144µs, about 23% faster than the
32 × 32 sector abstraction.

We illustrate these differences in Figure 8. We ranked
maps by difficulty for abstraction and CHs and looked for
the maps with the largest difference in ranking between the
two approaches. Map (a) has a difference in ranking of 36
(out of 120) and is easier for abstraction as all paths are
short. Map (b) has a difference in ranking of 65 and is hard
for abstraction because paths are long, where CHs can re-
duce the abstract planning cost with many shortcut edges.

Refining Abstract Paths
We report the total cost of refinement for the sector abstrac-
tion in node expansions and total suboptimality in Table 3.
This refinement is done via an A* search which is con-
strained to stay within the same sectors as the abstract path.
As the cost of refinement is length-dependent, we report the
average number of node expansions required for each high-
level path node that is refined. The best and worst columns
give a general range of values that the refinement cost might
fall in between, although these are not absolute worst and
best cases for all maps. The average cost of refinement is
smaller for smaller sector sizes. We measured several re-
finement lengths, as we have a choice of how many edges
to refine at each step. Shorter refinement lengths decrease
the average work but increase suboptimality. In general, this
data serves to show that refining the abstract paths is much
easier than finding paths in the first place.

We report the cost of path refinement for CHs in Table 4.
Refinement in CHs is just a matter of unpacking edges. We
report the number of edges which must be refined to gener-
ate a complete path, although fewer edges must be refined
in practice to actually start moving. None of these numbers
is particularly large, meaning that refinement in CHs will be
cheaper than in sector abstractions. It is interesting to note
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Easy for CH
Harder for Abstraction

Table 2: Results for path planning.
All 10% long 1% hard 1%
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Sector Abs (32 × 32) 17.2 30.5 42.0 64.3 121.4 137.5 165.5 187.8
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CH Low Mem 59.8 59.3 137.8 150.4 130.3 101.7 374.9 334.3

in nodes expanded with a lower reduction in speed except
on the hardest problems, where performance is still poor.
The worst-case results would improve with the use of more
heuristics, however this would increase the memory and
node expansion overhead as well. This approach returns
optimal paths through the abstract graph, but the paths are
not usable until the entire path is completed, a disadvantage
when compared to the other approaches.

The next three lines of Table 2 evaluate the performance
of the second level of abstraction as the sector size changes.
For both the sector abstraction and CH, we evaluate the cost
of finding the initial path here, and then measure the refine-
ment cost separately. The A* performance is based on a 8×8
abstraction, so using a high-level 16×16 abstraction would,
in the best case, provide a 4 times reduction in nodes ex-
panded, while we see a 3 times reduction across each set of
problems. The 24 × 24 abstraction results in approximately
a 5 times reduction in node expansions, and the 32 × 32
abstraction results in approximately an 8 times reduction in
node expansions, even on the hardest problems. Thus, the
abstraction can effectively reduce node expansions. Addi-
tional work is required to incrementally refine this result into
a followable path.

Finally, we look at contraction hierarchies at the bottom of
Table 2. We compare only the mobile implementation, as the
other implementation uses too much memory. We compare
one contraction ordering which takes more memory and re-
sults in more efficient planning to another ordering that uses
less memory but has less efficient planning. As with abstrac-
tion, the contraction hierarchies return paths that must be re-
fined in order to use them. We report just the time to find the
path and not to refine it, as this can be done incrementally.

The low-memory approach is about 2 times slower than
the higher memory approach. The performance of the CH
is worse than a 24 × 24 or 32 × 32 abstraction on average,
and for the 10% hardest problems. But, a peculiar things
happens when we look at the longest 1% of all problems.
Contraction hierarchies here are actually faster than on the
10% longest from each map. This shows the strength of
contraction hierarchies and why they have been so success-
ful in road networks. Longer paths are likely to have more
shortcuts resulting in very short paths. For these paths the
refinement process will be more expensive, but optimal dis-
tances can be computed very quickly. If we instead look
at the hardest 1% of problems, we see that there are many
problems that are hard for contraction hierarchies, with an
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Figure 8: Map (a) is easy for abstraction but hard for CHs.
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average solution time of 144µs, about 23% faster than the
32 × 32 sector abstraction.

We illustrate these differences in Figure 8. We ranked
maps by difficulty for abstraction and CHs and looked for
the maps with the largest difference in ranking between the
two approaches. Map (a) has a difference in ranking of 36
(out of 120) and is easier for abstraction as all paths are
short. Map (b) has a difference in ranking of 65 and is hard
for abstraction because paths are long, where CHs can re-
duce the abstract planning cost with many shortcut edges.

Refining Abstract Paths
We report the total cost of refinement for the sector abstrac-
tion in node expansions and total suboptimality in Table 3.
This refinement is done via an A* search which is con-
strained to stay within the same sectors as the abstract path.
As the cost of refinement is length-dependent, we report the
average number of node expansions required for each high-
level path node that is refined. The best and worst columns
give a general range of values that the refinement cost might
fall in between, although these are not absolute worst and
best cases for all maps. The average cost of refinement is
smaller for smaller sector sizes. We measured several re-
finement lengths, as we have a choice of how many edges
to refine at each step. Shorter refinement lengths decrease
the average work but increase suboptimality. In general, this
data serves to show that refining the abstract paths is much
easier than finding paths in the first place.

We report the cost of path refinement for CHs in Table 4.
Refinement in CHs is just a matter of unpacking edges. We
report the number of edges which must be refined to gener-
ate a complete path, although fewer edges must be refined
in practice to actually start moving. None of these numbers
is particularly large, meaning that refinement in CHs will be
cheaper than in sector abstractions. It is interesting to note
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Use in practice

• In practice:

• Do not contract the whole graph

• Contract until the graph reaches a particular size

• Then search with differential heuristics



Deployment:
Dragon Age Origins
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Example: Dragon Age (BioWare)

• 2006 - BioWare approached UofA

• Pathfinding using 100ms (1ms available)

• No memory budget

• Initial implementation (late 2006 - early 2007)

• Additional enhancements (2008)

• Achieved 100µs average per unit per frame

• Computation spread across frames



High-level planning Sparse graph

Medium-level planning Sparse graph

Low-level planning Grid

Executed path Arbitrary line segments

Pathfinding Architecture
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Dragon Age - Additional Enhancements

• Many new features over previous games:

• Map-wide pathfinding

• Trap/area effect avoidance

• Improved static obstacle/creature avoidance

• Improved path-following animation

• Many other small performance tweaks



Sectors / Regions

• Divide world into 
large sectors
• Fixed size
• Index implicitly

• Divide sectors      
into regions
• Regions entirely 

connected
• Regions have a 
center point
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Edges

•Look at borders of 
regions to determine 
edges
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Abstract Graph

•Original Map:

•32x32 = 1024 cells

•Abstract Graph:

•9 nodes

•10 edges
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Usage Example

•Find abstract 
parents

•Find abstract path

•Find real path
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Total Work Compared to A*
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Dragon Age: Origins



Engine Features



PC



Dragon Age Pathfinding Top Two Layers of Abstraction



Dragon Age Pathfinding Outdoor Map









Avoiding a trap





Artifacts of Abstraction
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Errors at the grid level

• Grid versus real-valued locations

• PC/NPC location is a real-valued location

• Mouse clicks are real-value location

• Low-level planning is on a grid







Solution -- end one step early and then go to goal







Dragon Age Pathfinding Indoor Map



Dragon Age Pathfinding Indoor Map: Detail







Path Continuity

• Orzammar

• NPC doesn’t remember 
movement history















Heuristics
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Heuristics

• Background

• Pattern Databases

• True-Distance Heuristics
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Previous work

• Pattern Databases (PDB)

• Pre-computed, memory-based heuristic
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Previous work - PDB

• Mark some states as “don’t care”

• Creates abstract state space

• Solve all states in abstract state space exactly
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PDB -- analysis

• PDBs have been applied to state spaces which grow 
exponentially

• Branching factor b

• Search depth d

• State space size O(bd)
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PDB -- analysis

• Assume we can store 1/f of the state space

• Assume abstract branching factor is the same

• Let c be the max. dist. in the abstract state space

• bc = 1/f · bd

• c = d - logb(f)

• Heuristics only lose a small amount of accuracy

• 60MB 15-puzzle PDB has max value of 54

• 10TB state space has max value of 80



Abstraction in Maps

11,614 states 3,455 states
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Analysis -- maps

• 2D maps grow with r2 (r is radius of search)

• If we can store 1/f of the full state space

• c2 = 1/f · r2

• c = r/%‾f
• Abstract search space by factor of 4

• Maximum heuristic value is reduced by factor of 2

• Bad for heuristics!



Abstraction in Maps

11,614 states
Width: 157

3,455 states
Width: 80
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Ideals

• Want a heuristic that can be used between any two 
states

• Want to minimize cost of the heuristic

• Heuristic should be based on true-distances in the 
world instead of abstract distances

• New class, True-Distance Heuristic
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Differential Heuristic (ALT)

• If we have a solution to the single-source shortest-path 
problem for a state s, we can use it to get a heuristic 
between any two states

• Assume undirected graph

• h(a, b) = | d(a, s) - d(b, s) |

• Invented and re-invented in several different 
communities
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Differential Heuristic

• Need to store multiple heuristics and take the max to 
get good results
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A* - 10 diff. heuristics
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Improving performance

• What if we don’t have much memory available?

• Can the heuristic be compressed?

• Only store heuristics at some nodes

• Goal is fixed, so find all heuristics around the goal

• During search use whatever heuristic is available

• Subtract distance from goal
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Inconsistent heuristics in theory and practice Ariel Felner, Uzi Zahavi, Robert 
Holte, Jonathan Schaeffer, Nathan Sturtevant, Zhifu Zhang, Artificial Intelligence

The Compressed Differential Heuristics
Meir Goldenberg, Nathan Sturtevant, Ariel Felner, Jonathan Schaeffer, AAAI 2011





Building Heuristics and
Maximum Variance Unfolding

Euclidean Heuristic Optimization, Chris Rayner, Michael Bowling, Nathan Sturtevant, AAAI 2011
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Euclidean heuristics

• Euclidean heuristics are heuristic values that can be 
computed as distances in some Euclidean space of d 
dimensions

• h(i, j) = ∥yi # yj∥

• Let Y be the n by d matrix storing the vectors yi. Y 
implicitly encodes the heuristic function.

• Can we find the best Euclidean heuristic?



Introduction & Problem Constraints Loss Function Interpretations Experiments Conclusion

PROBLEM STATEMENT
OPTIMIZATION

Look among all Euclidean heuristics for one that is best
(best?)

Definition (Optimal Euclidean Heuristic)
Minimizes the loss between “true” distances and heuristics:

minimize
Y

L(Y)

subject to Y is admissible and consistent

Finding Euclidean Heuristics
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Introduction & Problem Constraints Loss Function Interpretations Experiments Conclusion

ADMISSIBILITY/CONSISTENCY

A Euclidean heuristic is admissible and consistent if:

∀i, j �yi − yj� ≤ d(i, j)
∀i, j, k �yi − yj� ≤ d(i, k) + �yj − yk�

(these constraints are unmanageable)

Expressing admissibility constraints

• Want to avoid pre-computing all paths and adding them 
as constraints in problem formulation

• Local consistency → global consistency → admissibility
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Loss function

• Minimize squared error between true distance and 
heuristic

• Weight coordinates i, j which are more important

• Reformulate as:

Introduction & Problem Constraints Loss Function Interpretations Experiments Conclusion

DEFINING LOSS

We use a loss function to:

� combine the errors ∀ij into a single scalar value

� specify trade-off: many small errors vs a large error

� specify relative importance of each state pair

L(Y) =
�

i,j

Wij
��d(i, j)2 − �yi − yj�2

��

Introduction & Problem Constraints Loss Function Interpretations Experiments Conclusion

REWRITING THE LOSS

L(Y) =
�

i,j

Wij|d(i, j)2 − �yi − yj�2|

d(i, j)2 ≥ �yi − yj�2

L(Y) =
�

i,j

Wij(d(i, j)2 − �yi − yj�2)

L(Y) =
�

i,j

Wijd(i, j)2−
�

i,j

Wij�yi − yj�2

maximize
Y

�

i,j

Wij�yi − yj�2
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Optimization problem

• Weighted generalization of MVU [Weinberger et al 2006] 
(for nonlinear dimensionality reduction)

• Links learning a heuristic to manifold learning

• Two separate areas which haven’t been connected 
before

• A differential heuristic is a one-dimensional 
embedding in Euclidean space

• Previously had heuristic methods for choosing where 
to place heuristics

• Now have formal optimization



Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows equally contributing dimensions.
Euclidean heuristics excel, while also using less memory.

embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performances of these heuristics are compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon

Age: Origins and the path planning problems are typical
to many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality – they often feature long ‘corridors’
such as the one shown in Figure 1. As a result, most paths
only require good heuristics on states in corridors, for which
a one dimensional differential heuristic combined with the
default heuristic suffices. Similarly, the multidimensional
embeddings found by applying our method tend to have only
one descriptive dimension corresponding to the longest cor-
ridor. Storage of the less descriptive dimensions is wasteful
compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,

Figure 3: Dragon Age: Origins results on standard problem
sets. Inset plot reveals low intrinsic dimensionality: the first
dimension of each embedding supports most of the variance.

which tends to capture most of the available variance.
Figure 3 shows results from the Hierarchical Open Graph

(HOG) search platform for five groups of heuristics: the de-
fault “octile” heuristic (where diagonal moves cost 1.5), Dif-

ferential (1) and (3) (sets of one and three differential heuris-
tics, respectively) and Euclidean (1) and (3) (sets of one and
three one dimensional optimal Euclidean heuristics, respec-
tively). The sets of heuristics in each group are combined
with each other and the default heuristic by taking the maxi-
mum over all available heuristic values. We see that optimal
Euclidean heuristics based on W+

diff are an improvement (al-
beit small) over differential heuristics, which optimize using
the weights Wdiff. It is prudent to note here that differential
heuristics can be computed more quickly and scale to much
larger problems. Yet, we have shown that the concept of dif-
ferential heuristics can be improved upon as suggested by
our optimization interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top
6 and 18 dimensions of this single embedding. The perfor-
mances of these heuristics are compared in Figure 4. Note
that differential heuristics actually excel on the longest prob-
lems. This is because over half of these longest problems
(of which there are roughly 180) start or end on the state
for the word ‘upas’, which is often chosen as a pivot point.
However, across the vast majority of paths, the multidimen-
sional Euclidean heuristic offers a substantial improvement
over combining one dimensional differential heuristics.

Example usage: 3-dimensional cube



Example: Dragon Age Maps

Figure 2: Cube world results, averaged over 10,000 random
problems. Inset plot shows equally contributing dimensions.
Euclidean heuristics excel, while also using less memory.

embedding from a uniformly weighted optimal Euclidean
heuristic is simply the positions of the centers of the unit
cubes. The performances of these heuristics are compared
in Figure 2. This search space is intrinsically multidimen-
sional, and a heuristic based on the three-dimensional em-
bedding significantly, although not surprisingly, outperforms
the combined heuristics from one dimensional embeddings
(i.e., differential heuristics) while using less memory.

Game Maps. The next domain is a test suite of path plan-
ning problems from 61 computer game maps containing 168
to 6,240 states. The maps come from Bioware’s Dragon

Age: Origins and the path planning problems are typical
to many computer games. Cardinal moves have unit cost,
and diagonal moves cost 1.5, enabling heuristic values to be
rounded up to the nearest half. Some transitions are blocked
by obstacles, and cutting corners (moving diagonally be-
tween states which are not in a 4-clique) is disallowed to
mimic spatial restrictions on an agent with volume.

In contrast to the cube world, these game maps have low
intrinsic dimensionality – they often feature long ‘corridors’
such as the one shown in Figure 1. As a result, most paths
only require good heuristics on states in corridors, for which
a one dimensional differential heuristic combined with the
default heuristic suffices. Similarly, the multidimensional
embeddings found by applying our method tend to have only
one descriptive dimension corresponding to the longest cor-
ridor. Storage of the less descriptive dimensions is wasteful
compared to embedding another (distinct) corridor.

With these considerations in mind, we turn to the weight
matrix W . The best way to define W is an open question,
but we take a first step by showing that it can be designed
to augment the differential heuristics defined by an effec-
tive pivot layout. The first pivot is placed in a state farthest
from a randomly chosen seed state. Each subsequent pivot is
placed in a state most distant from the previous pivots. The
nth Euclidean heuristic uses weights W+

diff based on the nth
pivot, where non-pivot entries in W+

diff are set to 10−3. From
each embedding only the most descriptive dimension is kept,

Figure 3: Dragon Age: Origins results on standard problem
sets. Inset plot reveals low intrinsic dimensionality: the first
dimension of each embedding supports most of the variance.

which tends to capture most of the available variance.
Figure 3 shows results from the Hierarchical Open Graph

(HOG) search platform for five groups of heuristics: the de-
fault “octile” heuristic (where diagonal moves cost 1.5), Dif-

ferential (1) and (3) (sets of one and three differential heuris-
tics, respectively) and Euclidean (1) and (3) (sets of one and
three one dimensional optimal Euclidean heuristics, respec-
tively). The sets of heuristics in each group are combined
with each other and the default heuristic by taking the maxi-
mum over all available heuristic values. We see that optimal
Euclidean heuristics based on W+

diff are an improvement (al-
beit small) over differential heuristics, which optimize using
the weights Wdiff. It is prudent to note here that differential
heuristics can be computed more quickly and scale to much
larger problems. Yet, we have shown that the concept of dif-
ferential heuristics can be improved upon as suggested by
our optimization interpretation of their construction.

Word Search. This domain’s states represent four-letter
words in English. The goal is to change a start word into
a goal word by changing one letter at a time. For example,
there is an edge between the words ‘fore’ and ‘fork’, but no
edge between ‘fore’ and ‘pork’. All transitions are unit cost,
enabling us to take the ceiling of any heuristic value. We
used the largest connected subgraph of words as the search
space, which is densely connected and has 4,820 states.

To construct differential heuristics, we use the same pivot
layout discussed earlier to situate sets of 6 and 18 pivots.
But here we optimize a multidimensional Euclidean heuris-
tic under a uniform weight matrix W , and consider the top
6 and 18 dimensions of this single embedding. The perfor-
mances of these heuristics are compared in Figure 4. Note
that differential heuristics actually excel on the longest prob-
lems. This is because over half of these longest problems
(of which there are roughly 180) start or end on the state
for the word ‘upas’, which is often chosen as a pivot point.
However, across the vast majority of paths, the multidimen-
sional Euclidean heuristic offers a substantial improvement
over combining one dimensional differential heuristics.



Example: Word search (edit distance)

Figure 4: Word search results, averaged over 10,000 random
problems. Inset plot shows variance over many dimensions.

Conclusion
This paper introduced a novel approach to constructing ad-
missible and consistent heuristics as the solution to a con-
strained optimization problem – one that has already been
studied in the field of dimensionality reduction. The ap-
proach generalizes differential heuristics beyond a single
dimension. Furthermore it enabled a number of insights,
including the bias in the implied objective of differential
heuristics, and tying the success of differential heuristics to
the intrinsic dimensionality of the search space as recovered
from our proposed optimization.

The observed connection between heuristic search and di-
mensionality reduction appears highly profitable. Heuristic
search is a natural application for manifold learning tech-
niques of which MVU is just one. The work in this pa-
per can be extended in a number of directions: scaling to
larger problems (Weinberger et al. 2006), fundamentally dif-
ferent objective functions, or away from Euclidean metrics
and into non-Euclidean geometries (Walter 2004). We have
only touched the surface of what could grow into a highly
beneficial relationship between these two subfields.
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Summary

• Looking for paths through state space

• Abstraction and heuristic techniques used to speed 
search

• Availability of technique depends on underlying 
problem characteristics

• Large class of interesting problems which fit in memory
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Many other areas of search

• Planning

• Building better heuristics from logic description of 
problem

• Randomizing search

• Multiple OPEN lists

• Monte-Carlo variations

• Suboptimal search


